

OF

 MICROSCOPES,

 MICROSCOPES,}

AND THE

DISCOVERIES

MADE THEREBY.
illustrated with many copper-plates。

By HENRY BAKER,

Fellow of the Royal Society, and Member of the Society of Aniquaries, in London.

IN TWO VOLUMES.
VoL. I. The Microscope made easy.
VOL. If. Employment for the Microscope.

Reran Natura nufquam mages quàm in Minimus lota eco. Plain. Nat. Hilt, Lib. xi. c. z.

$$
\text { I. } O N D O O N \text { : }
$$

PRINTED FOR J. DODSLEY, IN PALL-MAI.L. M.DCC.LXXXV.

V O L. Ii.

E M P L O Y M ENT FORTHE

MICROSCOPE.

 In T W O P A R T S.1. An Examination of Salts and Saline Subfonces, their amazing Configurations and Cryfals, as formed under the Eye of the Obferver:

WITH
Plain Directions how to prepare fuch Subftances; and preferve them in conltant Readinefs for Infpection; whereby the Curious may always be furnifhed with numberlefs Objects hitherto listle known.

ALS 0

Occafional Confiderations on Gems, Poijons, the Vegetation of Metals, the Refufcitation of Plants, the Formation of Amber, Corals, and many orher Subjects.
II. An Account of various Animalcules never before defcribed; and of many other Micrefopical Discoveries.
With OBSERVATIONS and REMARKS.

> LIKEWISE

A Defcription of the Microscope ufed in there Experiments, and of a new Micromiter ferving to flew the Size of magnified Objects.
together with
Inftructions for printing off any Medal or Coins.

TOTHE

RIGHT HONOURABLE

The Earl of Cardigan.

 My LORD,I S Grace the late Duke of直 Montagu, (whofeName muft be ever dear to all that knew him) was pleafed to honour, with his particular Notice, the Experiments and Obfervations defcribed in the following Sheets, and frequently expreffed his Defire of having them made public: and as your Lordfhip feemed no lefs to admire thefe wonderful Operations of Nature, I take the Liberty to requeft your Acceptance of a Work, whofe NoA 3 velty
velty and Variety will, I hope, yield you fome Entertainment, at the fame Time it affords me the defirable Opportunity of profoffing my moft humble Refpect.

The Firf Part of this Treatife difcovers in the Particles of Matter compofing Salts and faline Subftances, Propertics whofe amazing Effects would furpafs all human Belief or Conception, were we not convinced of their Truth by the ftrongeft ocular Demonftration. That beautiful Order in which they arrange themfelves and come together under the Eye, after being feparated and fet at Liberty by Diffolution, is here deferibed and fhewn.-DDid they amongft them all compofe but one Kind of Figure, however fimple, with Conftancy and Regularity, we fhould de-
clare

DEDICATION.

clare it wonderful: What muft we then fay, when we fee every Species working as it were on a different Plan, producing Cubes, Rhombs, Pyramids, Pentagons, Hexagons, Octagons, or fome other curious Figures. peculiar to itfelf; or compofing a Variety of Ramifications, Lines, and Angles, with a greater Mathematical Exactnefs than the moft fkilful Hand could draw them?

Senfible of my own Ignorance, I pretend not to account how this is done: all I know is, that Chance or Accident cannot pofifibly produce Conftancy and Order, nor inert Matter give Activity and Direction to itfelf. When therefore there Particles of Salts are feen to move in Rank and File, obedient to unalterable Laws, and compofe regular and determined A 4 Figures,

viii
 DEDICATION.

Figures, we muft recur to that Almighty Wifdom and Power which planned out the Syftem of Nature, directs the Courfes of the Heavens, and governs the whole Univerfe.

The Experiments here defcribed, and which the Reader is inftructed to make, muft I think generally entertain; but merely to entertain, is, I hope, the leait of their Worth. They, may poffibly lead to the Knowledge of what paffes in the Formation of Gems, and the moft beautiful mineral Productions: And as every new Difcovery is an Encouragement to farther Difquifition, the Hirts heregiven may perhaps fet abler Heads at Work to improve Art on the Pilacipies of Naturc. Examinations by the Microfcope, in the Manner hore dirceted, may likewife be employed to afcertain the Truth and Purity
DEDICATION. ix

Purity of many fimple Subftances and Compofitions made ufe of in Medicine, and detect Fraud and Impofition.

The minute living Animals exhibited in the Second Part of this Work, will excite a confiderate Mind to admire in how fmall a Compafs Life can be contained, what varibus Organs it can actuate, and by what different Means it can fubfirt. They will alfo fhew that the Hand which made them is not confined to Size or Form; and that it has not been wanting to beftow on Creatures almoft invifible, and feemingly inconfiderable, every Member and Faculty convenient to their Happinefs.-But this is an endlefs Subject, with which I fhall detain you no longer, than to obferve, that were there wanting Proofs

Proofs of a Deity, they might here I think be found in great Abundance.

Your Lordfhip's great Condefcenfion and Goodnefs, in honouring this Work and its Author with your Patronage, muft always be remembered and acknowledged with the utmoft Gratitude, by,

My Lord,

Your Lordhip's much Obliged
and moft Obedient
Humble Servant,

Henry Baker.

[xi]

PREFACE.

2'I S hoped the Book nov publifled will be accepted favourably by the Curious, and particularly by thole acquainted with the USes of the Microfcope, as it opens to their View an almoft inexbaufible Store of Objects for that Inftrument; and many who are Strangers to it, may, 'ti likerwife hoped, be excited by what they read here, to lend Some Attention to fuck of Nature's wonderful Productions as cannot be known without it. The earneft Wills and Defire of the Author is, that all People would See with their own Eyes, and determine by their own Judgment; neither rafbly difbelieving what is here related because it may feem furprizing
xii PREFACE.
furprizing, nor lazily giving it Credit on bis bare Word without making Experiments themSelves.
. As many of both Sexes, who bave not bad the Advantage of a learned Education, are Wotwithjfanding greatly defircus of Knowledge; for the Suke of Juch, this Treatife is written in Terms moft eafy to be underflood; and a Sort Account of the Several Suiffances bere examined is given for their Information.

He begs Pardon of the Pbyficiuns and Chemifts, for encroacbing now and thin on their Province, in the Courfe of the following Obfervations and Remarks; and hopes they will generoufly excufe any Miflakes be may bave fallich into, as be is neither Pbyyician nor Cbemift. Thofe too who are themfelves well acquainted with the Subjects bere defcribed, will not, be hopes, be dipleafed at bis endeavouring to inflruct fucb as knore them not.

He acknowledges his Obligations to many ingcnious Friends, who bave favoured bins with
with their Obfervations from Time to Time, feveral of which are inferted in this Work; and Joall always be tbankful to any Gentleman who zvill fend bim an Account of wbatever be tbinks remarkable.

Contents

Contents of the Chapters.

PART the FIRST.

CH AP. I. Concerning the Configuration and Cryftals of Salts and faline Subfances, page I
Chap. II. The Method of preparing Salts and faline Subftances, for the viewing their Configurations,
Chap. V. Of Cryfalization, $2 I$

Chap. VI. Directions for making a Collection of the Solutions of Salts and faline Subfances, and preferving them always in Readinefs to be examined by the Microfcope,
Chap. VII. A general Explanation of the Plates, with jome farther Thougbts on the Cryftals and Configurations of Salts, 37
Chap. VIII. Of Gemi Salt, Spring Sait, and Sea Salt,
Chap. IX. Nitre or Salt Petre, 62
Chap. X. Of Vitriol in General,
xvi Contents of the Chapters.
Chap. XI. Blue Vitriol, p. 76
Chap. XII. Green Vitriol, or Englifl Copperi
ras,
84
Chap. XIIİ. Wbite Vitriol, 88
Chap. XIV. Difilled Verdigreafe, 03
Chap. XV. Alum, 96
Chap. XVI. Borax, 106
Chap. XVII. Sult A:ninoniac, 109
Chap. XVIII. Salt of Lead, II 4
Chap. XIX. Solit of Tin, 117
Chap. XX. Ens Veneris, 119
Chap. XXI. Flowers of Antimony, 122
Chap. XXII. Corrofive Sublimate, and Arfe-nic,125
Chap. XXIII. Salt of Ainber, 13^{8}
Chap. XXIV. Scarborough Salt, 147
Chap. XXV. Cbeltenbam Salt, 49
Chap. XXVI. Effom Salt, 150
Chap. XXVII. Sal Polychreftum, ${ }^{1} 52$
Chav. XXVIII. Glauber's Salt, I 53
Chap. XXIx. Salt of Tartar, 155
Chap. XXX. Tartar Titriolated, 15^{8}
Chap. XXXI. Flowers of Eenjanin, 160
Chap. XXXII. Salt of Camomile, 162
Chap. XXXIII. Salt of Coral, 163
Chap. XXXIV. Salt of Baum, or Balm, 165Chap.

Contents of the Chapters. xvii
Chap. XXXV. Salt of Fennel, p. 166
Chap. XXXVI. Salt of Bucktborn, 167
Chap. XXXVII. Salt of Berberry, 168
Chap. XXXVIII. Salt of Cucumber, 170
Chap. XXXIX, Salt of Peruvian Bark; 171
Chap. XL. Salt of Liquorice, 172.
Chap XLI. Salt of Butcher's Broom, 173
Chap. XLII. Salt of Wormwood, 175
Chap. XLIII. Salt of Tobaccco, 176
Chap. XLIV. Salt of Carduus, 178
Chap. XLV. Salt of Lavender, 178
Chap. XLVI. Salt of Mugzort, 179
Chap. XLVII. Salt of Harthorn, 180
Chap. XLVIII. Salt of Urine, 181
Chap. XLIX. Salt of Millepedes, 183
Chap. L. Rbeum, 184
Chap. LI. Of Campbire, 188
Chap. LII. Of Manna, 189
Chap. LIII. Concerning the Vegetation ofMetals,19 !
Chap. LIV. Of the Refufcitation of Plants,208
Chap. LV. Mifcellaneous Obfervations on Salts,\&c.
zviii Contents of the Chapters.

PART the SECOND.

CHAP. I. Of the Hair-like Infect, p. 233
U_{1} Chap. II. Of the Oat-Animal, 241
Chap. III. Eels in Pafte Viviparous, 244
Chap. IV. Eels in bligbted Wheat, 25°
Chap. V. Of the Proteus, $\quad 260$
Chap. VI. Of the Wheeler, or Wheel Animal, 266
Chap. VII. Different Kinds of Wheel Aniprals,

292
Chap. VIII. Animalcules revith Sbells and Wheels, 295
Chap. IX. The Water Flea woith brancled Horns,

302
Chap. X. The Bell-Flower Animal, or Plunned Polype,

306
Chap. XI. The Satyr,
3^{14}
Chap. XII. Three Aquatic Animals deferibcd, 316
Chap. XIII. The Globe Animal, 322 Chap. IV. Fggs of the finall Freflo-Water Snail, and Animalculies adibering to tbem, 3^{24} Chap. XV. Of cluflering Polypes, 334 Chap. XVI. The Mulbcrry Infect,

Contents of the Chapters. xix Chap. XVII. The Pipe Animal, p. 349 Chap. XVIII. TheWater Hog-Loufe, or Sow, 35 I
Chap. XIX. Of the Frefh-Water Squille, 35^{6} Chap. XX. The brifled Infect, $\quad 3^{6} 3$ Chap. XXI. An Infect with Fifb-like Fins, 364
Chap. XXII. An Infect with Net-like Arms, 366
Chap. XXIII. Injects found on the Bark of the $A \beta$, 37 I
Chap. XXIV. The Loufe of the Carp, 374 Chap. XXV. The Loufe of the Banfickle or Prickle-back,

377
Chap. XXVI. The long-fnouted Squilla, 378 Chap. XXVII. A Letter from a Friend containing many curious Microfcopical Obfervations,
3^{80}
Chap. XXVIII. Of luminous Water Infects, 399
Chap. XXIX. The Loufe of the Bat, 406 Chap. XXX. Obfervations on a large Spider, 409
Chap. XXXI. Mifcellaneous Obfervations, 415
Some Account of a new conftructed Microfcope ufed in the foregoing Experiments, 422 Remarks
xi Contents of the Chapters.
Remarks on a Micrometer to be applied to Double Compound Microfcopes. By Martin Folkes, Eff; F. K.S. p. 426
A Defcription of Mr. Lecuwenboek's Microfcopes,

434
Directions for making the Reprefentation or Pieture of any Medal or Coin, 43^{6}

全

EMPLOYMENT

> FOR THE

Microscope, \&c.

C H A P. I.

Concerning the CONFIGURATIONS and Crystals of Salts and Saline Substances.

 far as poffible, the Operations of Nature in the Formation of Bodies, and their Effects on one another : and as the moft reafonable Way of accounting for their Effects muft arife from a Difcovery and Confideration of the Figure, Size, Solidity, Weight, and Motion, of their

Vol. II.

2

 Configurations and Cryfalsconftituent Parts; fince we do not, I think, fuppofe Body to act on Body by any other Principles*: I have long imagined, that if by an eafy and natural Separation of fuch their conftituent Parts, it were poffible to know the comparative Size and Figure, Solidity and Motion of the Particles compounding Bodiés, when fo feparated from one another; and if we could alfo learn in what Order and Figure they naturally come together, and re-unite after fuch a Separation,' it might lay a Foundation whereon fome able Builder may erect a valuable Superftructure.

With this View I have been making Experiments, almort continually, for above ten Years paft, on a great Variety of Saline Bodies, Mineral, Vegetable and Animal, as well as many other Subftances, both fimple and compound, whore Parts can be diffolved in Fluids, after a Method which has never hitherto been defcribed by any Author, or practifed before myfelf by any body that I have heard of. And tho' I have found their original Particles undifcoverable by any Microfcope, the Time I hope has" not been wholly mifemployed ; fince I have been enabled, by the Help of that Inftrument, to behold the amazing Order

[^0]and Regularity, wherewith, after being feparated by Diffolution, they come together and re-unite under the Eye, when put in Action by certain Degrees of Heat, in Configurations appropriated to each of them refpectively, and with a Conftancy that is furprifing.

That particular Notice, wherewith the Royal Society was pleafed to honour thofe Experiments t, encouraged me to profecute them with all the Care in my Power, to minute down every remarkable Circumftance in the Procefs, and to make faithful Drawings of each Configuration.

Much has been already publifhed by feveral curious Obfervers concerning the Cryftalizations and regular Figures of Salts, and none I hope will imagine I am hereby endeavouring to deprive them either of their Difcoveries or their due Praife. But I pre-

+ After many repeated Examinations of Salts and Saline Subftances by the Help of Glaffes, in the Winter of the Year 1743, I had the Honour twice of entertaining the Royar. Society with a View of their Configurations, which were then thought fo extraordinaty, that very many of that illuf. trious Body came often afterwards to fee them more at Leifure at my Lodgings; and in the Year 1744, Sir Hans Sloane, Bart. late Prefident of that Society, was pleafed, at the Recommendation of his worthy Succeffor Martin Folkes, Eff; and of the Council of the faid Snciety, to beftow on me the Medal of Gold, annually prefented (as the Donation of Sir Godfrey Copley; Bart. of which Sir Mans is the only furviving Truftee) to whomfoever of their. Members fhall be deemed to have produced the moft extraordinary Difcovery during the whole Yoar.
fume my Experiments go a great deal farther, both as to the Manner of Examination, and the Variety of Subjects examined: for by the Afinfance of Heat, which in a greater or lefs Degree is perhaps a conftant Agent in all the Operations of Nature, very different Configurations and Effects are produced than what can be caufed without it, and our Information is thereby rendered much more compleat and perfect.

To give one fingle Inftance of this, which takes place equally in moft other Subjects: The Ciyftals of Alum are well known, and their Figures (when a Solution of it is permitted to cryftalize quietly and of itfelf) have been truely defcribed and pictured by others to be octaëdra, confifting of hexangular, triangular, and quadrangular Planes: but nobody I believe has before difcover'd, at leaft nobody hitherto has informed the World, that the Particles of Alum, when feparated by Diffolution, and excited to Action by a certain Degree of Heat, fo arrange themfelves as to compore regular and delightful Star-like Figures of different Sizes, many whereof have long, ftreamin: Tails, and refemble Comets: that it fhoots. forth in fome Places Figures like Palifadoes, and in others an almoft infinite Number of parallel Lines, moft exquifitely ftrait, exact and fine; fome croffing others at right Angles, and compoling an Appearance beyond

of Salts and Saline Subblances.

beyond Defcription beautiful. Vide Plate III. No. I. Indeed the Production of the Starlike Figures depends on a certain Nicety in the Heat continued for a certain Time, which one is not always fure to hit precifely; and therefore, though they appear very frequently, they are not quite fo coniftant in every Trial as its other Configurations; but I doubt, not Practice and Obfervation will render them fo in Time.

I muin beg leave to call thefe Arrangements of the Particles by the Name of Configurations, thereby to diftinguifh them from the Cryftalizations inentioned by others, whereto they bear little or no Refemblance. Cryftalizations feem produced by a Tendency or Attraction of the Saline Particles towards certain Points, about which they combine in regular and determin'd Forms, according to their refpective Kinds. Configurations owe their Shapes mof probably to different Fits of Repulfion and Attraction, (thofe two wonderful Principles which occafion moft of the Changes in Nature) taking place at certain Intervals and in certain Proportions, and operating according to Rules that ate conftant and uniform, though little known to us at prefent. Or if, to make the Subject underftood the better, I may be permitted to fetch a Comparifon from a cominon Suppofition, without examining whether it B 3
be true or falfe, Cryftalization is like the retiring of the Sap into the Roots of Trees at the Approach of Winter, where during the cold Seafon it remains dormant and unactive: Configuration refembles what refults from the Expanfion of the fame Sap at the Return of Spring, when excited to Action by the Sun's genial Warmth, it pufhes every Way, exerts its vegetative Force, and becomes productive of Buds, Leaves, Branches, Bloffoms and Fruits. But the Drawings of one and the other compared together and confidered, will render this Difference more intellizible than all the Words in Language.

The beautiful Regularity and Order always obfervable in the Works of Nature, are no where more evident than in the Experiments I am mentioning; where the invifible Particles of Matter, though difunited by a Menftruum, and removed to Diftances from each other, are no fooner excited to Action than they mutually affint one another to compofe Figures peculiar to their feveral Kinds, with as much Certainty and Uniformity as Seeds of the fame Plant produce Plants like one another, not indeed precifely as to the Number or Pofition of their Branches, Leaves or Flowers, but in the general Growth and Fafhion, and thofe other Particularities whereby each Species is diftinguifhed.

of Salts and Saline Subfances.

Our Eyes, are continually accuftomed to fee the Productions of Nature when finifhed, or brought a confiderable Way towards it; and what contemplative Man can behold them without Admiration and Delight! but in thefe Experiments we are enabled, by the Affiftance of Glaffes, to riew her actually at Work, forming under our Eyes, and in a few Minutes, Bodies fo exquifitely beautiful that nothing but feeing can give any juft Idea of them; and that too with fuch a Variety, as to the Plan and Fafhion of each Kind, as is abfolutely unconceivable.

Defrriptions of the Subjects here treated of would be unintelligible without the Affiftance of Drawings. Drawings therefore have been made, and Copper Plates engraven, at no fmall Expence, of the different Configurations hereafter mentioned: which, though greatly deficient in Beauty and Regularity, if compared with the Originals, and only pretending to give fuch a general Refemblance as may diftinguifh each Kind from other, will 'tis hoped proye fatisfactory to thofe who thall pleafe to repeat the Experiments after me: for however frange they may appear, they are no fanciful Reprefentations produced by the Strength of Imagination, nor are they taken haftily from one or two Trials, but truely thew what generally prefented in

8

 Configurations and Cryffals great Numbers of repeated Obfervations. Their Figures are indeed fo extraordinary, that I hould not dare to have laid them before any body, much lefs to have publifhed them, were there not many Gentlemen of unexceptionable Credit who are living Witneffes of their Truth, and was I not alfo able, almoft at any Time, to produce Configurations like thofe they were taken from.Thefe conftant and regular Workings of Nature, which the Microfcope difcovers, may pofiibly conduct us a Step farther into her Receffes, and affift us to judge of Caufes and Effects in many Cafes where at prefent we are greatly at a Lofs, fince according to Dr. Woodward \dagger, " the Stea"dinefs, and Conftancy of Nature in all its "Productions, and in the Formation of all " Bodies, happens from the Confancy of the "Procedure of the Agents that are inftru"" mental to the Formation of thofe Bodies, " and from the Unalterablenefs of the Cor"purcles which ferve for conflituting and "compofing of thofe Bodies." And we are told by the Rt. Rev. Author of Syris \dagger, that the "Analogy, Conftancy and Uni"f formity in the Phænomena or Appear" ances of Nature are a Foundation for gene"ral Rules: and thefe are a Grammar for " the Underfaniding of Nature, or the Series

+ Vide Woodward's Nat. Hift. of Fofils, Eng. Edit. Vol. I. p. 186. \ddagger Sect. 122.
of Salts and Saline Subfances.
" of Effects in the vifible World, whereby " we are enabled to fofefee what will come " to pafs in the natural Courfe of Things." As there is good Reafon therefore to expect, that the following Experiments may conduce fomething towards accounting for many Caufes and Effects in Nature, when duly confidered by People of true Judgment, to fuch I freely fubmit them; without pretending any thing more myfelf than barely to relate Facts: but thould they ferve no other Purpofe than to prefent a new Set of Objèts for the' Micrôfcope, full as wonderful and entertaining as any that have ever been yet examined, affording by Mixture a Variety almoft in 1 finite, eafily procured, and always ready for Obfervation, there are many I flatter my felf to whom they will prove acceptable. And I fhall endeavour to affift as much as porfible the Curiofity of thofe who may be inclined to repeat thefe Experiments after me, by deferibing in the plaineft Terms each Circumftance neceffary to be known; either previous to, or during the Time of Obfervation by the Microfcope, and dare affure them for their 'Encouragement, that the Trouble is very little, though the Pleafure and Information tefulting therefrom is great.

To begin then with the Manner of preparing thefe Subjects for Obfervation.

> C H A P.

C H A P. II.

The Metbod of preparing Salt's and Saline Substances, for the viewing their ConFIGURATIONS.

IDiffolve the Subject to be examined in no larger a Quantity of River or Rain Water than I am certain it is fufficient to faturate. If it is a Body cafily diffolvable I make ufe of cold Water, otherwife I make the Water warm, or hot, or even boiling, according as I find it neceffary. After it is perfectly diffolved, I let it reft for fome Hours, till, if overcharged, the redundant Saline Particles may be precipitated, and fettle at the Bottom, or fhoot into Cryftals ; by which Means I am moft likely to have a Solution of the fame Strength at one Time as at another ; that is, a Solution fully charged with as much as it can hold up, and no more; and by thefe Precautions the Configurations appear alike, how often fo ever tried: whereas if the Water be lefs faturated, the Proportions at different Times wvill be fubject to more Uncertainty; and if it be examined before fuch Separation and Precipitation of the redundant Salts, little more will be feen than a confufed Mafs of Cryftals.

The Solution being thus prepared, I take up a Drop of it with a Goole Quill, cut in Fanhion

Fafhion of a Scoop, and place it on a flat Slip of Glafs of about three Quarters of an Inch in Width, and between three and four Inches long, fpreading it on the Glafs with the Quill, in either a round or oval Figure, till it appears a Quarter of an Inch or more in Diameter, and fo fhallow as to rife very little above the Surface of the Glafs. When it is fo difpofed, I hold it as level as I can over the clear Part of a Fire that is not too fierce, or over the Flame of a Candle at a Diftance proportionable to the Degree of Heat it requires, (which Experience only can direct,) and watch it very carefully, till I difcover the Saline Particles beginning to gather and look white, or of fome other Colour, at the Extremities of the Edges. Then (having adjufted the Microfcope beforehand for its Reception, armed with the fourth Glafs, which is the fitteft for moft of there Experiments,) I place it under my Eye, and bring it exactly to the Focus of the Magnifier, and after running over the whole Drop, I fix my Attention on that Side where I obferve any Increafe or pufhing forwards of cryftaline Matter from the Circumference towards the Center.

This Motion is extremely flow at the Beginning, unlefs the Drop has been overheated, but quickens as the Water evaporates, and in many Kinds towards the Conclufion produces Configurations with a Swiftnefs
unconceiveable, compofed of an Infinity of Parts, which are adjufted to each other with an Elegance, Regularity and Order, beyond what the exacteft Pencil in the World, guided by the Ruler and Compaffes, can ever equal, or the moft luxuriant Imagination fancy.

When Action once hegins, the Eye cannot be taken off, even for a Momen:, without lofing fomething worth Obfervation: for the Figures alter every Inftant till the whole Procefe is over ; and in many Sorts, after all feems at an End, new Forms arife, different entirely from any that appeared before, and which probably are owing to fome fmall Quantity of Salt of another Kind. which the other feparates from and leaves to act after itfelf has done: and in fome Subjects three or four different Sorts are obfervable, few or none being fimple and homogeneous.

When the Configurations are fully formed, and all the Water evaporated, moft Kinds of them are foon deftroyed again by the Moifture or Action of the Air upon them; their Points and Angles lofe their Sharpnefs, become uneven and defaced, and moulder as it were away. But fome few are permanent, and by being inclofed between Glaffes, as I fhall direct hereafter, may be preferved Months, or even Years, entertaining Objects for the Microfcope.
N. B. It happens oftentimes that a Drop of a Saline Solution can hardly be fpread on the Slip of Glafs, by reafon of the Glafs's Smoothnefs, but breaks into little Globules, as it would do were the Surface greafy; this was very troublefome, till I found a Way of preventing it, by rubbing the broken Drop with my Finger over the Glafs, fo as to leave the Glafs fmear'd with it ; on which fmear'd Place when dry, another Drop of the Solution may be fpread very eafily in what Form one pleafes.

It likewife fometimes happens, that wher a heated Drop is placed properly enough for Examination, the Obferver finds he can diftinguifh nothing: which is owing to Saline Steams that rife from the Drop; cover and obfcure the Object Glafs, and therefore muft immediately be wiped away with a foft Cloth or Leather.
'Tis I think an allowed Maxim, that Salts. act not unlefs in a State of Diffolution, for which Reafon I diffolved them in order to obferve their Manner of acting. A certain Degree of Heat is likewife moft commonly employ'd by Nature in all her various 'Productions: wherefore I imagined that by the Affiftance of Heat, applied in different Degrees, I might in fome Sort imitate Na ture, and produce fuch Figures as Salts are thrown into, not when they ceafe to act, which I apprehend is the Cafe when they
are formed into Cryftals, but even whilft they are acting : and this what I call their Configuration does moft wonderfully fhew.

My Intention was to difcover as far as might be, the natural Inclination, Progreffion and Figure of each refpective Salt under Examination ; it was confequently neceffary to avoid making ufe of any Difiolvent, which by containing other Salts might create Confufion, and produce Forms not conitant or effential to the Subject of Inquiry. River or Rain Water has therefore moft commonly been my Diffolvent, being what I judged leaft likely to prejudice my Experiments. I am very fenfible neither Salts or other Bodies are to be obtained unmixt and perfectly homogeneous: but I have taken Pains to procure fuch of each Kind, as appeared moft pure and perfect, I mean of the fimple Salts; as for the Compounds I was obliged to rely on the Chemift.

In all Examinations by the Microfcofe of Saline Solutions, even though made in the Day-time, I always employ the Light of a Candle, and advife every Obferver to do fo likewife: for the Configurations being exceedingly tranfparent, are rendered much more diftinguifhable by the brown Light a Candle affords, than by the more white and tranfparent Day-light ; and befides, either by moving the Candle or turning the Microfcope, fuch Light may be

Salts and Saline Subfances.

varied or directed juft as the Subject requires.
It may be alfo proper to take Notice, that no Kinds of Microfcope are fit for there Obfervations, but fuch as have an open Stage, whereon the Slips of Glafs with the Liquor upon them may be placed readily, and in a perfect horizontal Pofition ; and moreover where they can be turned about freely, and without difordering the Fluid. Thofe Microfcopes where Sliders or Slips of Glafs are thruft in between two Plates, as in Wilfon's, \&cc. be they in whatever Direction, cannot therefore properly be employed here.-The following Obfervations were all made by a double Microfcope, conftructed by Mr. Cuff; in Fleet-freet, with fome Regard to thefe Experiments. Its Figure refembles what is called commonly the Double Refecting Microfope, and like that it receives Light from a Speculum underneath : but befides an Improvement. in the Pofition of the Glaffes, its Stage is difencumbered with Legs, and quite open for the Reception of Objects without Trouble; its Motion is not by Jerks, as in the Microfcope juft now mentioned, but regulated by a fine-threaded Skrew, whereby it is adjufted to the Eye with great Eare and Exactnefs; and all that try it will I believe judge it not only the moft convenient Microfcope for this Purpofe, but likewife for gene-

16 Of Salts in general.
ral Ufc. Wherefore as this Inftrument, which has been conttructed fince the Publication of the Microfcope made eafy, could not be given there amongft the other Microfropes then in ufe, I intend at the End of this Treatife to imfert a Drawing and fhort Defcription of it.

> C H A P. III. of SALTs in general.

IT feems neceffary, in order to make the Matter in Hand underftood the better, that fome Account be given of what is meant by Salts and Saline Subftances, together with fome fhort Explanation of the Difiolution of fuch Subftances, and their Cryftalization afterwards; whereby the Difference between my Experiments and thofe of others may become more evident.

Few will I prefume imagine, that I mean by Salts fuch Subftances only as afford what is called a Salt Tafte; for Salts are of all Taftes, and Sugar itfelf is no other than a Salt extracted from the Sugar Cane. But we underftand by Salts, all Subftances whatfoever that are difiolvable in Water, or whofe Parts become fo feparated thereby as to difappear therein; which, notwithftanding
fanding the Water being evaporated, fhew themfelves again combined in fome fort of angular Forms, with a Degree of Tranfparency, and to the Tafte are more or lefs pungent. To this may be added, that they are fufible by Fire.

Salt, thus underfood, is one of the firft Principles of the Chemifts; and indeed has good Reafon to be efteemed fo , as it enters into the Compofition of all Bodies. It is every whete, and in every thing: for if any Stone, Plant, or Animal be burnt, a Sale remains in the Afhes, which may be extracted by Water, and feparated from the Caput Mortuum.

It is the Nutriment of Animals, Vegetables and Minerals, infomuch that Herbs, Roots, Bread, \&cc. deprived of their Salts, can neither fuftain, noutifh, or increafe the Bodies of Animals; and the Earth when divefted of it becomes abfolutely barren.

Vegetables and Animals, whilft flourifhing and alive, difcharge by Perfpiration and other more fenfible Evacuations, the Excefs and Excrements only of the Salts whereby they are preferved: but when they perifh, the Chain whereby the Parts were kept together becomes broken, the Salts regain their Liberty by Putrefaction, fome fly away into the Air, and the reft remain in a Condition to enrich and render fertile
Vox. II.
that lean and hungry Earth which is deStitute of fuch Salt.

Taftes, Smells, and moft other Effects of Bodies on one another, feem occafioned by the Action of Salts, which by ftriking on our Organs produce Senfations correfpondent to their Figures, and by the fame means affect all other Bodies.

Being tranfparent, and having a ftrong attractive Power, they probably fupply both Matter, Confitence and Form to Spars, Cryftals, Diamonds, and all other Gems and pellucid angularly figured Fofils. When combined and at Reft they are perhaps the Bafis of Cohefion and Solidity in mof Bodies, the Pegs or Nails that hold the Parts of other Matter together; . but when put into Motion by the Separation of their component Particles, and their repulfive Force (which is no lefs vigorous than their attractive Power) becomes exerted, they are the moft active Principles in Nature, like Knives or Lancets cut their Way through every thing, and produce the moft furprizing Changes. Whence the Chemifts fay, that in the Sun and in Salt are all Nature's Productions; and, that he who knows not Salts, will never perform any thing in Art.

The Diftimetion of Salts into acid and a) kaline, into volatile, fixt, and effential, I fhall leave, the Reader to confult chemical Wiriters about.

CHAP。

[19]

C HAP. IV.

Of Dissolution.

THE Diffolution of Salts or faline Bodies is effected by an Intrufion or In terpofition of the Particles of Water, or fome other Diffolvent, between the Particles that compound fuch Bodies; whereby their Combination is deftroyed, and they become feparated from each other.

Sir Ifaac Neroton 中 accounts for the Diffolution of fuch Subftances from the great Principle of Attraction, and the Manner thereof is explained by Dr. Friend, in his Pralectiones Cbemica, p. 6I, where he gives a mechanical Defcription of the diffolving of common Salt in Water; the meaning of which in few Words is, "that the Cor" pufcles of Salt being extremely fimple? " minute, and folid for their Bulk, are con" fequently endued with a ftrong attractive "Power: (Attraction being, cateris paribus, " always in proportion to the Quantity of " Matter:) the Particles of Water are there-
" fore attracted more vigorounly by the fa" line Particles than by one another: for the " watery Particles cohering but nightly, and " moving readily, when they approach the
"Particles of Salt, rufh as it were into their

$$
\dagger \text { Vid. Newton's Opticks, p. } 35 \text { I. }
$$

$$
\mathrm{C}_{2} \text { is Embraces }
$$

" Embraces; and openingaPaffage into their
" Pores, which are very numerous, the Tex-
" ture and Cohefion of their Parts become
" intirely broken and deftroyed, the Corpuf-
"c cles are feparated, and float here and there
" in the Water."
Water (or fome other Liquor) having thus infinuated between the component Particles of faline Bodies, deftroyed their Cohefion, and removed them from each other; if the minute difunited Particles are fewer than what the Interftices of the Water can contain, they remain fufpended in the Fluid, though being extremely fmall and tranfparent the Eye camot difcern them ; for notwithfanding Salts are fecifically heavier than Water, their minute Particles, when feparated, having their Surfaces increafed in proportion as their Bulk is diminifhed, are unable to overcome the Refiftance of the Fluid, and confequently cannot fink therein. But if the laline Particles are more in Quantity than the Interftices of the Water can eafily contain, the Refidue attract cach other, form little Maffies heavier than the Fluid, and either fall to the Bottom, or acthere to the Sides of the Veffel, and that moft commonly in the Form of regular Cryftals.

[21]
 CHAP. V.
 of Crystalization.

TH E ufual Way of procuring Cryftals from any Salt or faline Subftance is, to diffolve the fame in warm Water; to filter the Mixture if there be any Foulnefs; to evaporate till a Film is feen at Top; and then to fet it in a cool place to fhoot. Heat enables the Water to diffolve and hold up a greater Quantity of the Salt than it would do without it, and Cold afterwards greatly affifts its forming into Cryftals.

The Cryftals thus formed, whether more or lefs in Quantity, will always have fuch Figure as is peculiar and conftant to the Kind of Salt they are procured from ; and how often foever their Particles be feparated by Solution, they will come together again, and reunite in fuch a Manner as to produce Bodies exactly of the fame regular Forms; which muft imply, that fuch component Particles, whatever their Shape or Texture be, are themfelves unalterable, and that the Principle or Law whereby they are brought together is uniform and perpetual. Their Concretion may be accounted for on Sir Ifaac Nervton's Principles, by the attractive Force with which all Bodies, and Salts more efpecially, by reafon of their Solidity, are endued ; whereby, when the Water wherein they float
is evaporated to fuch a Degree that the faline Particles come within the Reach of each other's attractive Power, and do actually attract one another more vigoroufly than the Fluid attracts them, they form themfelves into Cryftals. And as to the Regularity of their Figures, " that argues (according to the fame great Man) that "s the Particles of the Salt before they con"creted, floated in the Liquor at equal "Diftances in Rank and File; and by co confequence that they acted upon one " another by fome Power which at equa "Diftances is equal, at unequal Diftan"ces unequal. For by fuch a Power they "will range themfelves uniformly, and "w without it they float irregularly, and "come together as irregularly." He alfo fuppofes, is that the Particles not only "r range themfelves in Rank and File for "concreting in regular Figures, but alfo by "fome kind of polar Virtue turn their ho" mogencal Sides the fame Way *."

As that Conftancy of Figure, obfervable in the Production of Cryftals from the fame Salt, proves their component Particles to have fome determined and unalterable Shape, fo the Difference of Figure pecuJiar to the Cryfials of different Salts, induces one to believe, that the component Particles of each Kind differ no lefs in

* Nowton's Opticks, 2d Edit. Page 363.

Shape

Shape from the Particles of every other Kind than the Crystals they compose do.

The Particles of them all are indeed fo exquifitely minute, that no human Eye or Inftrument can poffibly difcern them, being finer, in feveral Kinds, even than the Particles of Air, forcing their Way through Metals, Glafs, and other Bodies, where the Air can find no Entrance. Conjectures have notwithftanding been made concerning their Figures; forme fuppofing them exactly of the fame Shape in little, as the Crystals they conflitute by their Combination are in a larger Size; whiff others infift, that their Shape is intirely different from what appears in the Crystals; the Figures whereof arife, as they imagine, froin a ftronger Attraction on forme Sides of the fame Particles than on others, whereby the Concretions on thole more attractive Sides are greater: for, fay they, if the Particles of Salt that from in a Fluid attract each other mutually, and by their Figure have a greater attractive Power in forme Parts than in others, and if their Contact be greaten in thole Parts, fuch Particles will form themfelves into Bodies with given Figures, or, in other Words, will conftitute regular Crystals.

That ingenious mathematical Profefior and Phyfician of Boronia *, Dominicus

[^1]24 Component Particles of Salts. Gulieiminus obferves, that the fenfible Cryftals of any Salt, however large or minute they may be, have always the fame Figures ; the Co-ordination of the Parts not depending on the Quantity of the component Matter: that Nitre, for Example, in its Efflorefcences from Walls, difpofes itfelf into very fiender Bodies of the like Figure exactly as its larger Cryftals ; and that not only Cryftals too fmall for our Eyes to fee, but even the minutef Particles of their Salt, that were difiolved in the Water before their Cryftalization, have the fame Figure as the larger Cryftals have. Whence he fuppofes the firf Principles of Matter whereof the Salt is compofed, and which on Account of their Smalline?s no Force can puffibly divide, to have fuch determined Figures, as they can never change, impofed on them at their Creation. And for this he quotes Mr. Lecurwienlopek, who afferts, that in Solutions of Cypriain Vitriol, and of Tartar, he has fecn Particles, which though not larger than the twenty thoufandth Part of the Thicknefs of a Hair, were exactly figured like their larger Cryftals ${ }^{\prime}$; and thofe Figures in two or three Minutes increaled to an liundred times their former Bulk, fill retaining their Figure, however they were enlarged in Length and Breadth.

Nor' does the imagine any other Caufe

Component Particles of Salts. 2
for the Separation of a Salt from the Fluid wherein it is diffolved, but an Inclination or the Planes of the fmalleft Particles to unite ; which Inclination being alike in all, they join one after another on every Side: by which means the Size grows larger, but the Figure alters not. Thofe in common Salt he affirms to be minute Cubes, in Vitriol Parallelopipeds, and in Nitre hexagonal Prifms.

Hence he infers, that the Figures of the Cryftals prove not only the Exiftence and Shape of their component Particles, but withal demonftrate that the Cryftals are themfelves produced by an appofite Union of fuch-like figur'd Particles, whofe Figures cannot be deftroyed unlefs by Annihilation.

That the molt minute Cryftals difcernible by the Microfcope may be obferved growing under the Eye, and enlarging their Dimenfions many thoufands of times without an Alteration in Figure, I dare affirm from my own Experience: but I pretend not thereby to determine the real Shape of the original Particles of any Salt, or to underfland the other Properties concerned. in their Combination. After all my Experiments, I am too fenfible of my own Ignorance to fet up any Hypotheris : that I leave to abler Judges, on future Trials; begging Leave inftead thereof to fubmit the following Queries to be confidered at Leifure.
$2 U E-$

$$
\begin{gathered}
{\left[\begin{array}{lll}
26 &]
\end{array}\right.} \\
2 U E R I E S .
\end{gathered}
$$

DO not Attraction and Repulfion feem to be the principal active Powers whereby the natural Changes in Bodies are produced ?

Are not thefe Powers inherent, probably, in all Matter, however their Agency may be fufpended, diminifhed, augmented, or otherwife diverfified?

May we not fuppofe, that by the firft of thefe Powers the original Particles of Matter be brought together and conjoined, in the Formation of moft compounded Bodies? and does not the Deftruction of fuch Bodies, or the Separation of their component Particles, feem probably greatly owing to the latter?

Is there not Reafon to believe, that the Particles of Matter conftituting Gold, Stone, Wood, Flefh, \mathcal{C}. are different from each other ab Origine; and, confequently, that there are different Kinds of fimple material Particles?

Muft not thefe Particles (however un-: conceivable their Mirutenefs be) have fome determined Figures and Sizes? May not fuch Figures and Sizes be different, and endued with different Degrees of the attractive or repulfive Force : and may not the Difference in Bodies as to Coherence,

Solidity, Duration, Ěc. be owing to the yarious Intermixture and Combination of Particles either alike, or unlike in Size and Figure \dagger ?
May there not be a Kind of Polarity in the original Particles? or, may they not attract at fome Points and repel at others, and that in various Proportions, according to their Inclination towards each other, their Diftances, their Points of Contact, or other Circumftances? May not fuch Attraction or Repulfion be excited, or fufpended, by Heat, Cold, Motion, Reft, Ȩc.? And as Light has alternate Fits of eafy Reflexion and eafy Tranfmiffion \ddagger, occafioned by the different original Properties of the different Sides of its Rays *, (as Sir Ifacc Nerwoton
t "All the Phænomena in Nature are produced by Motion. There appears an uniform working in Things great and fmall by attracting and repelling Forces. But the particular Laws of Attraction and Repulfion are various. The minute Corpuifles are impelled and directed, that is to fay, moved to and from each other, aocording to various Fules or Laws of Motion. Some Bodies approach together, others liy afunder, and perhaps fome others do neither. When Salt of Tartar flows per deliquium, it is virible that the Particles of Water floating in the Air are moved towards the Particles of Salt, and joined with them. And when we behold vulgar Salt not to flow per deliquium, may we not conclude that the fame Law of Nature and Mot on doth not obtain between its Particles and thofe of the floating Vapours? A Drop of Water affumes a round Figure, becaufe its Parts are moved towards each other : but the Particles of Oil and Vinegar have no fuch Difpofition to unite." Vide Bifhop of Cloyne's Syris, Page 110.

[^2]28 2UERIES.
has (hewn) ; may there not alfo be alternate Fits of ealy Attraction and ealy Repulfion, occafioned by the Conjunction, or Oppofition of the attractive or repulfive Sides in the Particles of Matter? May not the Succeffion of fuch Fits be extremely quick, as in the Vibration of Bodies, E?c. ? and may they not be prevented, diminifhed, circumfcribed, augmented, propagated, or communicated with almoft infinite Variety (as to the Modification) according to the Conftitution of the Bodies wherein they are excited, and the Aptnefs or Unaptnefs of other Bodies near them?

May we fuppofe the Attraction and Repulfion of Magnetifm, Gravity, and Electricity, to be different Powers, or different Modifications only of the general attractive and repulfive Power fuppofed refident in all Matter ?

Do not Heat and Motion feem mof likely to excite Repulfion; and are not Cold and Reft moft favourable to Attraction?

When the Particles of Subftances evaporate, become volatile, or fly away, is not fuch Volatility owing to the repulfive Force of the Particles, fomehow or other put into Aotion? And is not the Explofion of Gunpowder, Ejc. occafioned probably by a Fit of Repulfion, excited fuddenly and violently by Fire, in the component Particles of the Gunpowder?

$$
\text { QUER } I \text { E } S \text {. }
$$

Suppofing that Salts are diffolved, or their Parts feparated, (according to Sir Ifaac Nerwton's Theory, and the beforementioned Explanation of Dr. Friend,) becaufe the Particles of Water are inore ftrongly attracted by the Particles of Salt than by one another, and rufh between and difunite the faline Particles: may not the repulfive Power of the faline Particles, as to one another, be exerted at the fame Time? or may not a Fit of Repulfion inftantly fucceed the former Fit of Attraction *? And, if the repulfive Power be of equal Force in each of the Particles, will they not be repelled to equal Diftances from each other, and confequently be difpofed in Rank and File : and when their next Fit of Attraction takes place, will they not unite according to their Arrangement, and conftitute regular Figures?

Without fuppofing fuch Fits of Repulfion and Attraction, will it not be very difficult to conceive; how the Particles of Salt, which, notwithitanding their mutual Attraction and Contact, became feparated each from other by their ftronger Attrac-

[^3]tion of the Particles of Water, fhould afterwards, when carried to Diftances from each other, where their mutual Attraction muft be rendered much weaker, forfake the Particles of Water (which they had attracted and joined themfelves to fo ftrongly) come together again, and combine more firmly than they did before *; for Cryftals are not near fo eafy to diffolve as Salts before they are cryftalized ?

Does not the Power of Attraction increafe as the Diftances between the Particles decreafe? Is it not of great Strength, when they are brought in Contact? and would not moft Bodies be abfolutely folid; and their Parts almoft infeparable, was not Hardnefs an efiential Property in Matter, which (by rendering the Particles incompreffible) prevents their Contact otherwife than in Points, and occafions numberlefs Pores or Interftices between them?

May not the attractive and repulfive Power be in proportion to the Surface rather than the Solidity, (as it is found in Magnets); and inconfequence thereof, are not the fmalleft Particles endued with the ftrongeft Attraction and Repulfion?

* When a Glais Tube, made electrical by rubbing, attracts a downy Feather, foon afterwards repels it, and drives it continually away until the Feather has touched fome other Body; after which it immediately attracts, and then repels it; have we not a plain ocular Demondtration of alternate Fits of Attraction and Repulfion?
QUERIES:

If the Particles of Matter heye Sidas and Angles, will they not touch in more Points, and form Bodies more, folid and durable when joined together laterally, than when connected by their Angles? And if the Surfaces of fuch Bodies are fimooth and polifhed, will not their Junction be much the firmer?

When one Salt is faid to be converted into another, or appears in the Figures of another, by the Addition of fomething thereto; may it not be fuppofed, that by the Intervention of other fhaped Particles, the Particles of the firft Salt are prevented from cohering by the fame Sides and Angles as they did before; and that by the Mixture of thefe Figures the new Forms are produced?-Some Solutions will mix and form Cryftals and Configurations by Combination: in others, however blended, the Cryftals of each Kind appear always feparate.

Are not tranfparent Bodies compofed probably of homogeneous Particles, or Particles of the like Size and Figure, arranged in fome uniform Direction, whereby their Interftices being rendered regular, are fitly adapted for tranfmitting the R ays of Light? And is not the Tranfparency of all faline Cryftals and Configurations moftikely to bowing to the fame Caufe?

Do not the Colours of Bodies alfo depend on the Arrangement of their Particles, for the more or lefs ready Reflexion, Refraction, Tranfmiffion, or Retention of the Rays of Light?

C H A P. VI.

Directions for making a Collection of the Solutions of Salts and Saline Substances, and preferving them always in Readinefs to be examined by the Microjcope.

AS the Curious may be defirous to collect and keep by them the feveral Sorts of Salts mentioned in this Treatife, whereby they may at any time amufc themfelves or entertain their Friends at a Moment's Notice; I fhall put them in a Way that will entirely anfwer this Purpofe, founded on my own Experience.

Let a Drawer or Box be made three Inches in Depth, ten Inches wide, and fourteen Inches long in the Clear: at about an Inch and a quarter from its Bottom place a thin Board of the exact Length and Width of your Drawer, horizontaliy, on four little Pillars faftened in the Corners ; this Board having firft of all round Holes cut through it, in Rows, of a Size to receive Glafs Phials that hold one Quarter
of an Ounce, and fufficiently large for them to go eafily in and out. Such a Board will conveniently admit of twelve Rows, each Row having eight Holes:

Being thus furnifhed with a Repofitory for your Collection, and provided with ninety-fix Phials of clear Glafs to place in thefe Holes, where they will fand in Order without Danger of tumbling down or being otherwife difplaced, put into each Phial as much of any Salt or faline Subftance, reduced to Powder, as you are certain will be fufficient to faturate about half the Quantity of Water it can contain ; for 'tis beft to prepare no more at once, as thereby you will leave Room for making Mixtures and trying Experiments, which if the Bottles are quite full you cannot do fo well. Then with a Tea-fpoon, half fill your Phials with boiling Water, immerging them all the while up to the Neck in a-Bafon of Water, likewife boiling hot **, and hold them there till the Salt is all diffolved; or you are fure the Water will diffolve no more.

This done, faften with fiff Pafte a fmall Piece of Paper on the Side of each Fhial near the Neck, that it may eafily be feen; having previounly marked the Papers $1, \frac{2}{2}$, $3,4,5, \Xi^{2} c$. in a numerical Order. Fit

[^4]34 Directions for collecting
the Phials with good found Corks, on which you muft likewife mark the fane Numbers, that your may not miftake the Bottles they belong to: and do not think it enough to mark the Corks only, for many of the Salts will deftroy the Marks upon the Corks, and by that means leave you in the Dark as to what they contain, unlefs there are Papers alfo marked, to help you out.

Make then an exact Catalogue of them, fetting down each Particular under a Number correfpondent to that on the Bottle it is in ; whereby you will at any time find readily whatever Solution you want to examine. You may range your Bottles in what Order you think fit: that in this Treatife is perhaps as good as any.

Theie Preparations will keep good many Years; and when any Phial is almoft out it may eafly be replenifhed, fo as to preferve your Collection always compleat. Yous muft not expect to fill all your Bottles immediately; forty or fifty Sorts will be perhaps as many as you will foon be able to procure; and therefore, if you fhali be fatisfied with them, your Box may be contrived in the above Manner to contain only fome fuch Number. But a diligent Enquirer will be able to add to them from Time to Time, and would not willingly be limited in his Refeaches. Suppofe however

Solutions of Salts.

ever you have only forty Sorts; by different Mixtures and Compofitions of them with one another; you may produce many thoufands of Subjects for Examination, and be continually difcovering, new and wonm derful Configurations: from this rich Store, by combining different Salts, and in diffè er rent Quantities, innumerable Varisties may be formed, as from the different Arrangements of the twenty-four Letters of the Alphabet, all the Sounds of Language may be fignified.

Here is an unbounded Field, which I only point out to the Curious, wisbout defribing the Beauties I have frequently met: with in my Rambles there. 'Tis enough for me to thew the Configurations and Cryftals of Salts fimply and fingly; I recommend to thofe who have more Leifure, to examine them all differently combined.

Solutions thus prepared will be aiways ready to flew the Configurations forming under the Obferver's Eye; a Sight no one can behold without Admiration and Delight. It would likewife be very defirable to preferve the Configurations themfelves, after they are compleat and perfect, or in their different Stages: but this in general cannot be done, for much the greater Part of them are broken and defroyed by the Air foon after they are produced. A few however are durable, and may be kept a
long while in good Perfection, if another Slip of Glafs, of the fame Length and Breadth, be placed over that the Configurations are formed upon, with the Interpofition only of a very thin Slice of Cork between them at each End, to guard the Configurations, by keeping the Glaffes afunder, from being any ways rubbed or damaged. A little Glew, frong Gum, or fticking Pafte, applied to each Side of the Slices of Cork, will faften the Glaffes fo well together as to make of them a Sort of Boxes or Cares, including the Configurations, and defending them from any Injury, if the open Sides be fhut up, by pafting a narrow Slip of Paper over them: but then Pin-holes muft be made through the Paper; for if the Air be entirely excluded, the Configurations will foon decay.

I have now by me feveral of thefe little Cafes of Glafs, containing Configurations and Cryftals that appear nothing at all the worfe for keeping, though they have been prepared at leaft four Years. Thefe are always ready to fhew in a Minute, without any farther Trouble, and are a very pretty and curious Set of Objects. The Glaffes for them are all cut by the Glazier of the fame Size exactly, viz. one Inch and three Quarters long, and almoit an Inch broad. They muft be free from Scratches, Flaws, or Air Bubbles.

The

The Salts whofe Configurations or Cryftals may be thus kept, are common Salt of fome Kinds, not of all: Alum, fome of the Vitriols, Saccharum Saturni, Ens Veneris, Salt of Amber, and fome others, which are eafily known by their not breaking or diffolving away foon after they are produced.

C H A P. VII.

A general Explanation of the PLATEs, with fome farther Thoughts on the Cryfals and Configurations of Salts.

HAVING declared already what I mean by Configurations, and given a full Account how to prepare faline Subftances for that Purpofe, and to make a proper Collection of them, little more is requifite at prefent than to explain briefly what the following Plates defign.

Each Figure reprefents a Drop of the Solution of that Subftance whofe Name it bears; and is calculated to fhew the Procefs of its Appearances, from the firft beginning to cryftalize about the Edges, to the full and compleat Conclufion of all its feveral Changes.

As Heat excites Action, and fets the faline Particles in Motion, thofe Particles, whilft

3^{8} Thougbts on Configurations and Cryfals.

floating in a heated Fluid, may be fuppofed to have a confiderable Liberty of exerting their attractive and repulfive Properties; aş they approach each other in their Fits of Repullion or Attraction; or according to the fortuitous Appofition or Approach of theip attractive or repulfive Points to each other; wwhence a Commotion muft neceffarily arife, fome attracting and others repelling, till fuch tinलe as the Particles cañ difpofe themfelves in the Order and Figure that mumt neceffarily refult frorit their original Forms and Properties: which Forms and Properties being tuppofed unalterable, how often foever they are dififlved or feparated, they will conftantly unite again in the very fame Manner *. And accordingly, in many of the following Solutions innumerable little Maffes may be difcovered, huriying about moft violently, and in all Directions, before there appears the leaff Tendency towards flooting into regular Figures.

The Solution being more fhallow, and the Attraction greater, atout the. Edges of the Drop, than near its Middle, the floating Particics of Salt tend towards the Edges in great Abundance, and begin there, moft

* Should the Particles wear away, or break in Pieces, the N'ture of 'Things depending on them would be changed. Water and Earth compofed of old worn Particles and Fragments of Particles, would not be of the fame Nature and Texture now, with. Water and Earth compofed of intire particles in the Beginning. Nervion's Opticks, p. 376 .

Tbougbts on Conforgrations and Cryytals. 39 commonly, to combine in fuch Cryftals as are peculiar to the Subject; the Sides and Angles of which Crytals formed within the furrounding Fluid are regular, polifhed, and tranfparent: and their oppofite Sides would be the fame alfo, were they not terminated by the Edges of the Drop, and unable to form themfelves upon the dry Glafs.

This ufually is the Beginning of the Procefs ; and thus far the Power of Attraction feems alnof wholly to prevail: a Power whereto Cryftalization appears aimof intirely owing; Repulfion, on the contrary, may be-deemed the firft Agent in producing Configurations: or to fpeak more plainly, Attraction, by making all the Particles within a certain Circumference move towards fome certain Points, and combine together in a regular Order, produces Cryftals; Repulfion, by pufhing them outwards from fome certain Points, in a regular Order, occafions Configurations, when they are brought together again by Fits of Attraction.

Should it be objected, that our Configurations may alfo be produced by Attraction only, I muit prefume to think that is fcarcely poffible; for the Shoots that firft appear do not only pufh forwards vigorounly in the Procefs, but divide and fubdivide into innumerable Lines and Branches; which D 4

Divifion

40 Thoughts on Configurations and Cryfals.
Divifion and Subdivifion feem directly contrary to the Effect of an attractive Power; fince Attraction can hardly be fuppofed to make Particles of the fame homogeneous Matter feparate. I am however inclinable to believe, that the Fits of Repulfion, which puin out the aforefaid Lines and Branches, may be attended or immediately fucceeded by Fits of Attraction, laterally, in the Particles compofing them; whereby the intermediate faline Particles difperfed in the Fluid between the faid Lines and Branches are attracted to the Sides, combine with, and become a Part thereof. For was it otherwife, when the Fluid is quite evaporated, Particles of Salt would be found between the Lines, which they are not in any Quantity. Such a Propulfion forwards and Attraction fideways, at, or nearly at the fame Inftant of Time, may eafily be imagined, if we fuppofe two oppofite Sides of the raline Particles endued with an attractive, and two other oppofite Sides of the fame Particles endued with a repulfive Property, in fome fuch Sort, as every Ray of Light is confider'd by Sir Ifanc Newton, in his Obfervations on the double Refraction of Ifland Cryftal, as having * four Sides or Quarters, two whereof oppofite to one another incline the Ray to be refracted after one Manner, and the other two oppofite Sides incline the Ray to be refracted after a different Manner.

- Newton's Opticks, p. 334°

Cryftals

Thougbts on Configurations and Cryfals. 4 I

Cryttals and Configurations are frequently feen together in the fame Drop, and forming at the fame Inftant. As foon as the Cryftals become difcernible by the Microfcope, they are either Cubes, or Rhomboids, or Columns, or pyramidal, or triangular, or fome other certain Figures ; and to what Bignefs foever they may become enlarged, they fhew, from their very firft Appearance, the fame Sides and Angles that are feen afterwards when at their utmoft Size, no Alteration of Figure attending their Increafe in Bulk. But the Configurations change their Forms every Moment, pufhing forwards in new Shapes continually, and leaving no Refemblance of the Forms that prefented firf: infomuch,' that no better Guefs can be made (in a Subject never before examined) what Configuration will be form'd thereby, from feeing its firft beginning Shoots, than from feeing the Germen or feminal Leaves of an unknown Seed one can pafs a Judgment what other Leaves, Flowers and Fruit fuch unknown Seed thall produce.

From the firft puihing forward of the Salt there is a continual feeming progreffive Motion and Change of Figure * : but

[^5]
42 Thoughts on Configurations and Cryfals.

 as . Motion can not be pictured, I have endeavoured to fupply that Defect, by reprefenting, in fcveral Parts of the fame Drop, the difierent Stages or Appearances that are moof remarkable during the whole Procefs, and by giving a particular Account thercof in the Defrription.The cryftaline Shoots that prefent about the Edges of the Drop demard our frift Examination; and it is advifable from their very Beginaing to keep the Eye comftantly fixt upon them, and to obferve their Grow th. In fome Subjects the Configurations pufh out from there Cryftals into an Infinity of regular Branchings; but in others, and thore efpecially of the mineral Kind, the Cryftals fhooting from the extreare Edges into the ambient Fluid, preferve themelves feparate and entire, even through all the Changes that happen, and by their Tranf-
cies of fuch Salts become arranged in certain determined Figures, according to their refpectire Kinds, by Juxta-pofirion, Acciztion or Appofition, and not by any l'rotitufion or' frooting forward in the Manner of the Gruwth of Plants. And therefore thoagh grozving, booting out, lvancbing, protruding, and fuch like Terms, are frequently made uie of in the Courle of this Treatife, in order to avoid Circumbocatinn, and to rerider the Subjeet more familiar ; the Reader is defired to take Notice and remember, that fuch like ExprefFrins are not to de underflood literally in the ftrict Senfe of the Words, as fuppofing any thing fimilar to Vegctarion; any more than among People well feilled in Aftronomy the Sun is fupofed actually to move fiom Eaft to Weft, to rife in a Mornang and to go down at Night, though they frequetitly feate of its moving fo, of its rifing, aud its going town, in Conformity to common Appearance.
parency

Geins their Production and Colours. 43

parency, and polifhed Sides and Angles, bear a near Refemblance, when enlarged by the Microfcope, to the Shootings (in the Fiffures of Rocks and Mines) of Spars, Crytals, and feveral Kinds of angular and figur'd Gems, and ferve moreover to point cut after what Matiiner fuch Bodies are alfo probably formed in a furrounding Fluid*, and polfibly too of fimilar Materials: for there feems nothing untearonable in fuppofing that different mincral Salts, diffolved in fome Fluid exfuding from Rocks or Mines, and tinged with metalline Matfer, miy, through the wonderful Chemif: try of Nature, Inpply the different Subftance, Hardnefs and Colour of Spars, Cryfals, and precious Stones; in fome fuch like Way as their Refemblances are produced from the Solutions of fuch Salts \ddagger. Nor are the Hardnefs of precious Stones, their

- Cryftals and all angular Bodies concrete in the Midit of a refolvent Fluid or Menfruum. The Fluid wherein Cryftal is concreted, is to Cryftal as common Water is to Salt. (Steno's Prodromus, Eng. Edit. Page 64:) That is, the Crytal Particles are feparated and float in fuch Fluid, as the Yaricles of Salt do, when diffolved in common Water.
\ddagger Mines, or Beds of Metal, are met with conftantly, if fought after, neair the Places where precious Stones are foond. The Ruby is fuppofed by fome to take its Teint from Gold, by others froin Iron; the Emerald and Sapphire from Copper, but by different Mentrua; the Topaz from Lead or Iron; Granates from Iron, Erc. and a Mixture of two or more Teints from different Metals may polibly give Colour to the Aincehyt, the Hyacinth, the Opal, छ゙c. A greater or lefo Proportion of metalline Matter may alforen. der the Gem deeper or ipiler, harder or fofter.

Wher
their being void of any faline Tafte, and their Indiffolubility, fufficient Objections againft Salts being the Bafis of Diamonds, Rubies, Emeralds, Granates, \mathcal{O}^{c}. fince it is obfervable, that Glafs, in whofe Compofition Salt is a principal Ingredient, proves alfo undiffolvable, is endued with a confiderable Degree of Hardnefs, and (as its component Salts cannot act unlefs diffolved) is confequently infipid, or rather abfolutely taftelefs.

Whoever fhall pleare to repeat thefe Experiments after me, will I believe be fatisfied, that the Cryftals fhooting from a Solution of diftilled Verdigreafe, which is a Vitriol loaded with Copper ; thofe Cryftals I mean whofe Roots are at the Extremity of the Drop, and their Points in the ambient Fluid, refemble nearly the fhootings of Emeralds both in Figure and Colour: that the Cryftals of Ens Veneris, a Preparation of Iron, wonderfully emulate the Topaz, $\mathcal{E}^{\circ} c$.

When the faline Particles combine, without any metalline Admixture, the Concrete appears colourlefs, and probably forms pure Cryitals or Diamonds. The extreme Hardnefs and Luftre of the Diamond refult perhaps from the almoft abfolute Homogeneity and Purity of its component Particles, whofe Sides or Planes having admitted no foreign Particles between them, touch in many Points, and become thoreby almoft infeparable. Saline Particles in fuch Purity meet, however, but very feldom, and in fmall Quantity : but as mineral Salts abound almoft every where, and efpecially about Rocks and Mines, they frequently appear in Shoots or Maffes, blended more or lefs with talcky or other Matter, and probably conititute our Cryltals, Spars, ξ_{6}.

No Kinds of Matter that we know of, except Salts, have a Tendency to fuch-like Figures: but Salts when at Liberty always appear in them. The Tranfparency of Salts is alfo another Property almoft peculiar to themfelves and the Bodies we are fuppofing them to compofe: and therefore, notwithftanding in the fe our hafty and imperfect Experiments the Shoots are fo minute as to require a Microfcope to difcern them, and fo tender that the Air in a fhort Time deftroys them, may not Nature, who proceeds furely, though flowly, produce Bodies from a better Combination of the fame Kinds of Materials, of Size proportionable to the Quantity of fuch Materials, fimilar in Figure and Colour, hardly feparable, and of long Duration ?

I have dwelt the longer on this firft Part of the Procefs (which the Drawings point out in the Shootings of difilled Verdigreafe, Plate II. 1, I : in thofe of Alum, Plate III. 66 : and of Ens Veneris, Plate IV. a a) fince every Obferver muft be highly pleafed, to behold the beautiful Appearances of Emeralds, Diamonds, E_{C} c. rifing as it were from their native Bed, forming their regular Sides and Angles under his Eye, and glittering with a Brilliancy and Colouring hardly to be imagined.

What has been hitherto defcribed regards the Figures only that proceed from

46 T'roughts on Configurrations and Cryjfals.
and feem rooted to the very Extremity of the Drop.-The detached Cryftals that appear forming within the fame come next under Examination : and thefe, from their very firft becoming difcernable, being encompaffed on every Side by a Fluid replete with faline Particles, (which, fwim ming at Liberty, are attracted or repelled from every Quarter, till the Points of greaten? mutual Attraction meeting in Contact, com bine according to their re(pective Figures + :) Thefe, I fay, have all their Sides moft commonly regular and compleat, with fuch Number and Difpofition of polifn'd Planes and Angies as fully diftinguifh from what Salt they are derived. - Thefe are the Cryftals that were before mentioned to retain their Figure however their Size enlarges: They, and they alone, are properly to be termed the Cryitals of fuch Salt, and many of them in Elegance of Form and native Luftre excel the Workmanfhip of the moft expert Jeweller. Thefe are intended to be reprefented in the Alum Solution at f, and in that of Ens Veneris at $b b$. They are alfo fhewn again by themfelves, and in a larger Size, under thofe and fome of the other Drawings.

+ All foffil Cryftals, Gems, and other Bodies that have regular Planes and Angles, without an Appearance of being broke off from any Root or Stem, are probably formed in the fame Manner.

Thoughts on Configurations and Cryfals. 47

After the Cryftals about the Edges are grown large, and thofe farther within the Drop have likewife pretty nearly attained their full Size; in the Solutions I mean where fuch Cryftals do form ; for feveral Kinds produce Configurations but $n \supset$ Cryftals; and, on the contrary, in forme few, viz. of Sal Gem, common Salt, Egc. though Abundance of Cryftals are produced, no Configurations at all appear: After, I fay, the Cryftals are formed, the Configurations begin to fhoot, proceeding fomewhat flowly at the firft: but they quicken by Dem grees, and dast at laft, in many Subjects, quite over the whole Drop, as fwift as Lightning ; and that efpecially if the Drop has been too much or over fuddenly heat-ed. Therefore when the Configurations once begin, the Eye fhould never be takena off, till they are entirely finufhed. Some Defcription of them is given under each particular Subject, and they are reprefented in the Drawings, as the third stage of the Procefs, fignified by c, D, e, F, G, in the Alum Drop, and by c and d in the Drop of Eins Veneris.

Thefe Configurations are no lefs conftant in their forms than the Cry?tals are, infomuch that each Subject is eafly diftinguifhed by them. They feem compofed Jikewife of the fame tranfparent flining Puticles: but the Figures they produce

48 Human Knowledge very imperfect.

are fo extremely different, that every confiderate Obferver muft judge them owing to fome very different Property in Nature. I have ventured to mention Attraction and Repulfion, as two Principles that we may fuppofe concerned in producing thefe different Appearances, but am very far from being obftinate in this Opinion, or unwilling to recede from it, whenever any more probable Caufe can be affigned. I am fufficiently fenfible how liable we are to be miftaken, and how very little we know even of the moft common Things. The very Elements that are continually about us, the Fire, the Water, the Air we breathe, and tie Earth we tread upon, have many Properties beyond our Senfes to reach, or our Under.tanding to comprehend: and when we imagine twe know any one Thing perfectly, I am afraid we flatter and deceive ourfelves very grofly. It is our Happinefs, however, and our Duty, to beftow fome Time and Pains in making ourfelves acquainted with the Productions and Changes that Providence continually brings about in a regular and conftant Manner. We are able to fee Effects, though their Caufes are beyond our Knowledge: but as no Effect can be produced without fome Caufe, when we behold Order, Harmony, and Beauty arife out of Confufion, by means of certain active and unalterable Properties, where-

Thoughts on Configurations and Cryfals. 49
wherewith the Author of Nature has endued the original Particles of Matter; though we cannot underftand the mechanical Operation of thefe Properties, or know really what they are or can perform, we fhould raife our Contemplations and Adoration to that Eternal, Omnipotent, Supreme Firft Caufe, who is incomprehenfible in all his Works: and here, perhaps, here only, our Ignorance may commendably become the Mother of our Devotion.

In fhort, if the Cryftals of faline Subftances are wonderful, their Configurations are infinitely more fo: their Variety and Beauty no Words or Language can poffibly exprefs; and trying to give the Pictures of them is like endeavouring to paint the Luftre of a Diamond, or the Brightnefs of the Sun-finine.

It happens in fome Kinds of Solutions, that after the Cryftals are formed, the Configurations perfected, and when every thing feems over, and all is quiet, other new Configurations, and Cryltals too, prefent themfelves, in Figures very different from the former, and what probably are owing to Salt of another Kind that was latent in the Mixture.

[50]

C H A P. VHI.

OfGent-Salt, Sea-Salt, and Spring-Salt.

G
EMFSilt diffolved in warm Water, and
farDrop applied to the Microfcope on a Slip of Glafs, cither holding it over the Fire for ordittle while to haften the Experiment, corseaving the Water to evaporate at leifure, affords the feveral Figures that appear in the -firftPlate, ${ }^{\circ} \mathrm{I}$ I.
Sed-Salt treated in the like Manner produces Cryftals as at $\mathrm{N}^{\circ} \mathrm{II}$.
\therefore The Eigures of Spring-Salt, or BafketSalt:*, obtained by the fame Method, are fhewn at \mathbb{N}° III.

The Figures of thefe three Salts differ very little: each of thern producing Bodies of the like Forms; viz. folid Cubes, fquare Plates, and hollow Pyramids, having Bafes that are either exact Squares, or Rectangles, and whofe floping Sides diminifh gradually upwards by a kind of Steps, fome terminating in a Point, and others appearing truncated; or ending with plane Surfaces. Each Kind of thefe Salts does not however produce the fame Figures in equal. Plenty, for Gem-Salt, affords moft Variety; Séa-Salt abounds chiefly with

[^6]Rock, Spring, and Sea-Salt.
thofe two Figures No II, and Spring-Salt with thofe at N° III.

Moft Writers reprefent the Cryftals of there Salts as Cubes; and fuch in Truth they feem originally to be: I mean; when fo minute as juft to become diftinguifhable by the greateft Magnifier: large Maffes of Sal-Gem, and fometimes of Sea and SpringSalt, are feen in cubical or rectangular Figures, made up without doubt of innumerable minute Cubes. But in all Examinations by the Microfcope of the Solutions of thefe Salts, the Bodies that form and grow under the Eye are, in the general, not Cubes, but hollow Pyramids: though a Prepoffeffion that the Cryftals of fuch Salts are Cubes, makes thefe Figures, even under Infpection, often imagined fo to be: for the fquare Out-line, which is only the Bafe of an hollow Pyramid (ifs great Attention be not employed) is apt to give the Idea of a Cube: and the different Ranges or Steps, which by a gradual Diminution upwards compofe the floping Sides of the Pyramid, are eafily miftaken, from their great Tranfparency, to be no other than: Lines upon the Surface of the Cube. Indeed a few Cubes are feen now and then amongft the other Forms, but their Number is far too fmall to conclude the general Figure from : thofe very Cubes in fome Pofitions have

52 Rock, Spring, and Sea-Silt.
likewife the Appearance of regular Hexagons, as in Plıte I. No I. l.

I have examined various Species of thefe Salts from different Parts of the World, and particularly feveral brought from Egypt, Hungary, Germany, Oce. by my worthy and ingenious Friend Dr. Richard Pocock, Archdeacon of Dublin, and F. R. S. which, tho' red, brown, white, EJc. and feemingly of very different Contexture, fome appearing fibrous, others fiparry, talcky, Ecc. yet, when diffolved and examined, much the greateft Part of the regular Bodies produced in them all were of the fame general Fi gure, i. e. bollow Pyramids; with little farther Difference, than that fome were more tranfparent and fharper at the Top than others. It may therefore reaionably be concluded, that an hollow Pyramid, either pointed or flat, is the general Figure of all Foflile, Sea, and Spring-Salts, when after being diffolved, and a linall Degree of Heat given, their Particles are brought together, and unite again according to the Order and Difpofition of Nature: which hollow lymand is compofed of minute Cubes molt regularly and ivonderfully combined*. And this has been demonitrated

ever

- Dr. Brocnrigs olferves, in his very curious Treatire of the Ars of making Common Sali, p. Ó?, That when by a very gentle Exialation of W⿵ater firom comtan Sal:, is
even to the naked Eye by the Salt made after Mr. Thomas Lozondes's new Method, where Multitudes of fuch regular pyramidal hollow Bodies may be found, compofed as it were of a Number of little Stairs; and fo large, that each Side of their fquare Bafe is at leaft a Quarter of an Inch in Length *.

None of thefe Salts afford any Branchings out: the Appearances round the Edges of the Drop, when Heat is applied, being nothing elfe but a Congeries of faline Particles hurried together with very little Regularity, and producing no new forms: for which Reafon thefe Combinations are not reprefented in a Drop, as all that floot into Figures more different are. But notwithftanding the general Shape of there Bodies is nearly the fame, there are particular Differences very well worth obferving, which the Drawings endeavour to exprefs.
is fuffered to fhoot into its true Form, its Cryftals arc found o! a cubical Figure of various Sizes: and many of theie finaller Cryltals are united together into hollow Pyramids with a Cquare Bafe. Thefe Pyramids are truncated, being not finimed at the Top, but having there fixed a Cube of Salt of a more than ordinary Bignefs.
*Mr. Lowndes fays, " in the Salt made by the Sun, as "well as by my Way, you will never fail of feing very " many little Pyramids, which are compored of a Parcel of " fmall cubical Grains piled up in a mott exact Order, and " cemented togecher with wonderful Nicety: and the "Crowns of thefe Pyramids are always Cubes of a much " larger Size than any of the reft." Vid. Brine Salt improved, p. 16.

54 Figures of Gem-Salt.

PLATE I. $\mathrm{N}^{\circ} \mathrm{I}$.

Figures of Sal-Gemmef, or Rock-Saft.
a - A square pyramidal hollow Body, romewhat opake, whore four Sides are floping Triangles, and meet in a Point at Top.
b-A body with four equal floping Sides, terminated by a Plane at about half the Height of the former : not much transparent, but hollow.
c- A Body rifing about the Height of the lat, in the Manner here fhewn, and very tranfparent except as the Lines imply.
d - A square thin Plate, exceedingly tranfparent.
e - An hollow Pyramid, whore Bare is a Rectangle, and whore Sides are floping and terminate in a Point; the whole femi-tranfparent.
f - A narrower hollow Rectangle, with Hoping Sides not much transparent, riling about half. as high as the proceding, and then ending in a flat Surface that is very transparent.
\dot{g} - Another hollow Figure, having a rectangular Base, yery transparent, with Hoping Sides as in the Picture.

$$
b-A_{3}
$$

Figures of Sca-Salt.
b - An hollow Body, whore Top is a large tranfparent Square, and whore Sides are darkinh in the Middle, but very tranparent at the Ends, whereby the four Corners become alfo transparent.
$i-A$ very pretty transparent truncated paramodal Figure, whore Top is aldo a tranparent Square, and whole four Corners appear to open and feparate.
k - A fold Cube, femi-tranfparent.
l - Another Cube, which by its Pofition, if carelessly examined, will probably be mistaken for an Hexagon.
m - A fquare Plate of fame Thicknefs, but tranfparent: its Situation makes it feem a Rhombus.
$n n$ - Two oblong Plates, extremely thin and tranfparent, with a Spot in the Mid! of each.

$$
\text { PLATE ET. } \mathrm{N}^{\circ} \mathrm{II} .
$$

Figures of Sea-Salt.
o- A fquare Pyramid, hollow; and pretty transparent, wherein a Kind of Steps appear gradually leffening upwards.
p - Another Figure about half the Height of the preceding, whore Top is a very transparent fquare Plane, and whole four loping Sides are graduated and confiderably transparent.

$$
\mathrm{E}_{4} \quad \mathrm{P} \mathrm{LATE}_{4}
$$

56 Hollow Pyramids and Cubes.

PLATE I. No HII .

Figures of Spring-Salt.
After the Defcriptions already given, 'tis needlefs to fay more of the four following Figures, q, r, s, t, than that they alfo are hollow pyramidal tranfparent Bodies, with fuch different Graduations as themfelves pretty tolerably reprefent.
$v, w-$ Two of the large hollow Pyramids of Mr. Loundes's Salt, drawn in fuch. a perfpective View as may beft exprefs their real Figure; each baving a fquare Bafe, and four triangular sides that are nearly equal. Many fine Lines appear running acrofs thefe sides parallel to the Bafe, which, on a ftrict Infpection, are found to be a regular Graduation of Steps, leffening from the Bottom upwards. Thefe Pyramids do not commonly end in Points, but are terminated by a cubic Figure: each Corner of their Bafe is alfo frequently fupported by a Cube, but of a fmaller Size; and ftill lefier Figures of the fame Shape appear along the linear Edges, in Number equal to the Steps, and cloting the Angles where they join. There are Graduations withinfide theie Pyramids correfpondent to thofe without, like the Underwork of a Pair of Stairs. The Size here exhibited is

A Deception by the Microfcope.
 57

but little larger than that of the real Bodies they were drawn from.

It is very well worth. remarking, that amongft the many pyramidal Figures prefenting themfelves in a Drop of the Solution of thefe Salts, every one feems to ftand crect upon its hollow Bafe, and appears, when under Infpection by the Microfcope, exactly in the fame Manner as reprefented in the Plate: but this is a Deception; for in Double Microfcopes, compounded of three convex Glaffes after the ufual Manner, all the Parts of an Object are feen inverted ; that is, the Top appears at Bottom, the left Side on the right, $\mathcal{E}^{2} c$. The Lights and Shades being alfo inverted, the finking Places appenr to rife, and the rining Places to fink in: fo that in Truth the hollow Bafe of the Pyramid is really uppermoft and next the Eye, tho' it feems to be quite otherwife. And in Confirmation of this, I was affured by Mr. Lowndes, that in the making his Salt, nothing is more common than to fee the Pyramids forming upon the Surface of the Brine, and always with their truncated Ends downwards *.

We

- We are told in the Memoirs of the Royal Academy of Sciences for the Year 1700 , that Monfieur Homberg thewed a little Pyramid of Salt, formed in a Cryftallization. It was but low in Proportion to its Bafe, hollow within, and its Bare was uppermoft during the Time of its Formation; which Monfieur Homberg thus accounts for. There was formed, fays he, at firtt, a little Cube of Salt (the Figure Salt naturally affects) on the Surface of the falted Warer.

58. Salt whence derived; and bow diffufed.

We begin our $\boldsymbol{E x p e r i m e n t s ~ w i t h ~ t h a t ~}$ native foffile Salt, ufually called Rock-Salt from its - Place of: Growth, and from its Clearnefs Sal-Gem; as it is probably the Principle or Bafis of feveral other Salts.

Sea Water owes its Saltnefs moft likely to vaft Quantities of this Salt diffoived therein ; which, being extracted by different Methods, becomes either Bay-Salt, or what we commonly call Kitcben-Salt; and Springs running through or over Beds thereof, and becoming faturated therewith, afford by Boiling and Evaporation all our Inland or

This Cube did not fink, though heavier than the falt Water, any more than a Needle, if laid on Water gently, would do, and for the very fame Reafon: for when a Needle is placed in fuch a Manner on Water, a little Hollow is made about it, filled with Air only, in which it lies as in a little Boat; becaufe the Bulk of the little Hollow and Needle together is lighter than Water of the fame Dimenfions. A fimilar Hollow was formed about this Cube of Salt, which entered a little into the Water without. finking; its upper Surface was dry, and rofe above the Surface in the Hollow, though dot fo high as the general Surface of the Water round it. Other Cubes of Salt cryflallizing along the four Sides of this dry Surface began to form a fmall hollow Square, of which the firi Cube compofed the Bafe. Thefe Bittle Cubics, when joined rogether, becoming heavier than the firt fingle one, and being encompaffed with lefs Air in Proportion, from their. Junction to the firt by their inner Sides, furk fill deeper in the Water, that is, to the upper surface of the little Cubes which adhered to the firit Cube. Neiw Cubies of Salt adding themfelves to thefe, funk the Body yet loyer down; ani others continually joining them af:er the fame Manner, by enlarging the hollow Square, fiill plunged is more and more, and formed the inverted Pyramid; which growing at latit ton heary, funk to the Bottom of the Water, and then increaled no more.

Salt whence deriveds, and bow diffufed.

Bafket-Salt ; fo that, in Reality, Rock-Salt, Sea-Salt, and Spring-Salt, are derived from, one and the fame Original in the Bowels of Rocks and Mountains; and, upon the ftricteft Examination, they feem to differ no otherwife than by fome adventitious :Mixtures, as our Experiments evince, by fhewing that neither of them form any branched Configurations; but when their Pafticles combine again after Diffolution, they confantly compofe the fame Kinds of pyramidal Cryftal Bodies, with Bafes that are either exact Squares with four equal Sides, or elfe having two oppofite Sides longer than the other two, but always making a rightangled Figure.

1. This Salt is conveyed by Springs and Rivers wherever their Waters can find a Paflage. Its fineft Particles rifing with Exhalations from the Sea and other Waters; are likewife difperfed univerfally, and faturate the Surface of the whole Earth: where entering the Roots of Plants, they promote Vegetation, help to compofe their folid Parts, afcend with their Juices, and, according to their Mixture with them, produce that amazing Variety of Taftes; Smells, and other Qualities., Some of this may be recovered in its original Form, by Art, from mof Kinds of Vegetables; while the reft becomes fo changed by being blended with other Subftances, as to appear in the Shoots

60 The Nature aind uffeful Properties of Salt. or Cryftals peculiar to each Sort of Plant, and probably conftitutes its effential Salt.

It is alfo taken continually into the Stomachs of Animals, their: Food abounding with it, and affording them proper Nuitriment by the Means thereof. It diffolves in and circulates with their Blood and Hu mours, and becomes fo highly fubtilized by the Heat and Action of an animal Body, that the greatef Part of it is rendered volatile, and can hardly be reduced again into its original Figure, though fome of it may always be found unaltered in the Blood, Urine, $\mathcal{E F}_{6}$. And the Fertility which Dung produces in barren Soils, is owing to the Abundance of it contained therein : for though Salt in its naturai State is prejudicial to Vegetables, it becomes fo tempered, after having paffed through the Bowels of living Creatures, and been intimately mingled with their putrifying Fæces, that it caufes them to thrive exceedingly.

No Menftruum is yet found to diffolve Gold, unlefs one of the Salts we are treating of be an Ingredient therein; they being the only known Difolvents of Gold, a6 Nitre is of Silver: but, on the contrary, Common Salt, Rock-Salt, or Spring-Salt, mixed with Aqua Fortis or Spirit of Nitre, will prevent its difolving Silver, though fuch Mixture proves the readieft Diffolvent of Gold.

The Nature and uffeful Properties of Salt. 61
The peculiar Excellence of there Salts for the Prefervation of Flefh, Fifh, \mathcal{E}^{3}. is too well known to need Defcription; and their other extraordinary Virtues, when prepared in different Ways, are too many to be mentioned here. Glauber afferts, that common Salt is the moft ufeful and mof excellent of all the reft, being the Principle whence all other Salts, either known or unknown, are chiefly derived, and may by Art be produced. By a little Labour and Fire, and the Addition of fome metallic Sulphur, it may, he fays, be converted into Alum or Vitriol; by Fire, Air, and Sulphur, into Salt-Petre; by the Help of a fiercer Fire, into an alkalious Salt, and by deftroying its Acridity, into a Salt fit for enriching Land, and extremely ferviceable to fandy and barren Soils *.

Common Salt diffolved in fharp Vinegar, and a Drop thereof a little heated, fhoots fome pretty Configurations from the Edges, and affords Cryftals of the Figures juft now defcribed, extremely clear and beautiful, though fmaller than ufual. Thefe frequently are joined together with a curious Variety of Compofition, which the Cryftals of the fame Salt diffolved in Water never exhibit; for they commonly form feparate and difpofed at Diftances from each other.

- Vid. Dr Nat. Saliurt, Amfel. p. 49.

Difolved in Spirit of Wine, it likewife produces Configurations, but very different from thofe in Vinegar, with Cryftals finaller than ordinary, and having little or no Tranfparency.

Dr. Boerbaave fays, thefe three Spccies of Salt diffolve alike in three Times and a Quarter of their own Weight of Water *: but I have found a confiderable Difference in different Waters, and in different Portions of the farie Salt.

C H A P. IX.

Nitre, or Salt-Petre.

THIS Salt being diffolved in Water, a Drop of the Solution fhoots from its Edges, with very little Heat, into flattifh Figures of various Lengths, exceedingly tranfparent, and with Sides that are Atraight and parallel. Thefe are hewn in their different Degrees of Progreffion, at the Letters a, b, c, d, e, Plate I. N°. IV. where a reprefents how they firt begin.

Many of them appear cut floping at the Ends down to a Marp Edge, in the Manner of a Chiffel, and are fome wider and others narrower. Several alfo are found

[^7]with one Corner taken off obliquely, and that in different Angles; leaving the other Corrier fometimes quite a Point, and:fometimes having a little Breadth.

After Numbers of thefe are formed, they will often diffolve again under the Eye and entirely difappear ; but if one waits a little, new Shoots will pufh out, and the Procefs go on afrefh. There firft Figures fometimes enlarge only, without altering their Shape, and fometimes form in fuch Sort: ass the Drop reprefents; but if the Heat has been too great, they floot haftily into numerous Ramifications, very regular and beautiful, but which we have not attempted to draw, from the great Difficulty of doing it. There feems all the while a violent Agitation in the Fluid; and moft commonly, towards the Conclufion, a few Octaedra (compofed of eight triangular Planies, or two quadrangular Pyramids joined Bafe to Bafe) :appear.; which belong probably to fome other Kind of Salt intermixed with the Nitre: : Pyramidal Figures of cominon Salt are likewife fometimes feen; and of thefe I have now and then found the greateft Plenty when the Nitre has feemed moft white and pure, which I pretend not to account for, unlefs common Salt has been employed to make it fo.

The regular Cryftals of Nitre are reprefented underneath the Drop, greatly magni-

64 Cryfals of Nitre, bow obtained.
nified according to my Method of Examination, though indeed lefs than what may be found when large Quiantities are prepared in the common Way; and confift of fix parallel Sides or Planes, which compure Bodies of different Lengths, and differently terminated at the Ends. There is alio a confiderable Variety as to the Equality and Inequality of there fix Sides. The moft common Cryftals are fomewhat flat, and have two broad parallel Planes oppofite to one another, and four that are much narrower; two of which (viz. one that goes floping from the upper, and the other from the under Plane) meet on each Side, and conflitute a pretty fharp Edge. One End of thefe is commonly cut off floping on both Sides along its whole Breadth, but feldom in the fame Angle. Vid. Fig. 1. Sometimes however there are four broader Planes, and only two narrower; and now and then the Sides are pretty equal, and their Bafe is nearly an equilateral Hexagon. The feveral Differences in the Drawing are likewife to be met with, as well as fome others, but the raref as well as the prettieft is that at Fig. 6.

The beft Way to obtain thefe Cryftals for the Microfcope, is by faturating fome warm Water in a Spoon with Nitre (not with more however than it can perfectly diffolve), when in a few Minutes little Concretions
will be feen forming at the Bottom, which being taken up on the Point of a Penknife, before they are grown too large, and placed with a little of the Fluid on a Slip of Glafs, will be found, if they are not broken by the Removal, to have amongft them fome or all of the Figures fhewn in the Drop, and again reprefented in a larger Manner underneath the fame. And though the Cryftals thus obtained are exceeding fmall, they are much more intire, difinct, and true, than what by concreting in vaft Quantities become Millions of Times bigger, as they are frequently feen in the Shops Amongft there too may be found many Cryftals perfect at both Ends, by having been formed wholly detached in the furrounding Fluid, whereas thofe we get by any other Method are almoit conftantly broken at one End, from their having been fixed thereby to the Side or Bottom of the Vefiel they were formed in, or elfe to one another.

> PLATE I. No IV.

The Cryfals of Nitre.

1. The moft common Figure of NitreCryytals, with one End broken off.
2. A Cryftal with both Ends perfect; one in the ufual Form as above, the other Vol. II.

F an hexangular Plane. The Sides of this Column are four broader and two narrower Planes, whereas the preceding confifted of two broader and four narrower.
3. Another Cryftal, having one End a great deal floping and graduated, and the other cut off at different Angles.
4. A Cryftal inclofed feemingly within another, and forcing its way out, by burfting through the other's Side.
5. A Column with fix equal or nearly equal Sides: one End broken, and the other forming an hexangular Pyramid, whofe Sides are correfpondent to thofe of the Column.
6. A fhort hexangular equilateral Column, both whofe Ends are Pyramids, having Sides that correfpond with thofe of the Column.
One Particularity in Nitre is, that its Cryftals are perforated from End to End *, all along, juft within the Corners where the Planes interfect; as may be proved in the larger Shoots, by the Breath's paffing thro' them eafily on blowing. Thefe Channels are pointed out in Figure 2, by the fix Dots at its End; they are likewife fhewn more perfectly at Fig. 7. Which reprefents

- Gygliel. Dijc. Jopra le Fig. Ge' Sali, p. 12.
part of a Column with Hairs paffing thro' its Perforations.

This Salt is found juft under the Turf about Patnefs in the Northern Parts of the Kingdom of Bengal, and probably in other Places thereabouts, whence it is brought to us in great Abundance by the EaftIndia Company * : but all produced in Europe appears either like a kind of Efflorefcence adhering to Rocks and Walls, being what the Ancients called Apbronitum, and what is called by us Natural Salt-Petre, of which the Quantity collected is but fmall ; or is elfe extracted by Art from certain Earths and Stones, the Ruins of old Buildings, the Dung of Pigeons, and the Excrements and Urine of other Animals : the Manner of doing which is related by feveral Authors.

Examin'd chemicaily (and to ufe the Chemift's Terms) it appears compounded of a volatile acid Spirit, and a fixt alkalious Salt. Such a Spirit the Air abounds with : and this Spirit by penetrating into, and becoming incorporated and fixt by the alkalious Salts of Lime, and fome Sorts of Earth and Stone, is probably the active Principle that produces Salt-Petre. It is alfo very likely owing to the fame Principle, that Salt-

[^8]$$
\mathrm{F}_{2} \quad \text { Petre }
$$

Petre may conftantly be obtained from the Mortar and Rubbin of old Walls, which have been long expofed to the Air ; and that the fame Materials, after being divetted of it by Art, will afford a farther Quantity by lying a few Years together. 'The extreme Hardnefs of the Mortar in fome old Euildings, where it is found more difficult to be broken' than even the Bricks or Stones it ferved to cement, feems likewife occafioned by its being fo fully impregnated with this Spirit * or Principle, that it becomes in a manner petrified: and the alkalious Salts wherewith the Excrements of Animals abound, ferve probably, in the like Manner, to fix and embody the fame Spirit, and conftitute Salt-Petre. Some have undertaken to make it likewife from Lime, PotAfhes, 8 c. but howfoever it be produced, it may always be diftinguifhed by its hexagonal Shoots.

Let us now confider what other Productions of Nature appear in this hexagonal Figure; and we fhall find that all Cryftal, unlefs either ftraitened for Room

* May not what we call a volatile Spirit confift of Particles exccedingly minute, and of fome determinate Figuse; whofe Property it is to repel each other, from certain Points, in certain Directions, and to certain Diftances; whereby they are unable to combine together, unlefs by penetrating, mixing, and becoming embodied with other Matter, whole Pores they can frike into? and may not their tepulfive Power be increafed by Heat or Mction?
or overcharged with foreign Matter, is conftantly formed into Pyramids of fix Sides, or into hexagonal Columns terminated with fuch Pyramids, and refembling the Nitre Shoot 5. And as thefe Cryftals fhoot moft commonly from Rocks of calcarious Stone, may not their Form be owing to the fame volatile Spirit, more ftrongly fixed and embodied, and compofing a more hard and tranfparent Subftance, by an Admixture with fome Matter different from that wherewith it compofes Nitre? And if, inftead of exfuding from Stones, and adhering thereto by one End, ufually called a Root, there Principles happen to concrete in fome Fluid, or other foft Bed, where both Ends are equally at Liberty to fafhion themfelves according to the Inclination of their component Particles, may we not fuppofe they may then produce * thofe fparry or cryftaline Pyramids, joined Bafe towards Bafe by the Intervention of an hexagonal Column which are known by the Name of Buxton Diamonds, from the Place where found moft plentifully; and which in Figure refemble exactly the Shoot of Nitre 6?

The next moft remarkable Bodies of this Kind of Figure are thofe of Snow, which
-Vid. Woodward's Hifory of Fofzls, vol. T. p. 161. Thefe Bodies are called Irides by Aldrovand. See his Mufreum, p. 94i, 942.

70 An univerfal volatile acid Spirit,

 are always hexangular, or with fix Points *, nearly refembling the Bafe of the Column of Nitre I, or thin Slices of fuch a Column cut off traniverfely: and as freezing is ufually imputed to the Redundance of Nitrous Particles in the Air, thofe who embrace that Opinion will probably find little Difficuity in fuppofing this Form of Snow occafioned by the fame Principle that gives an hexagonal Figure to Nitre: and perhaps they are not minfaken in fuch a Suppofition, though there is fome Reafon to believe they may be fo as to the Abundance of the Particles of Nitre they imagine exifting in the Air.The continual Perppiration of growing Vegetables; the Putrefaction and Diffolution of thofe that perifh over the Face of the whole Earth, all which abound with volatile acid Salts; the continual Exhalations from Seas, Lakes, Rivers, and other Waters, which carry alfo up with them Abundance of the fineft Particles of Mineral or Sea Salts; the Steans and Vapours from Metals and other Subfances: all thefe compofe together the volatile acid Spirit wherewith the Air is filled, and which probably is the active Principle that gives the Figure, and fupplies Part of the Matter to Cryftals, Snow, and Nitre.

* The Flakes found now and then with twelve Points, are probably two Flakes, whose flat Surfaces are flack together, with thear Rays alternately difpoled.

But the Particles of this acid Spirit are no more the Particles of Nitre, than Nitre is the Gunpowder which it compofes by the Addition of Sulphur and Charcoal. And the Truth of this feems confirmed by the Impoffibility of obtaining a fingle Grain of real Nitre from any Quantity of Snow or Ice: whereas Nitre being but little volatile, fome of it certainly would be found if it was really there. However, though no Nitre can be found, after the volatile Salts that link'd the Particles of Water to one another are driven out by Heat, and the Water becomes fluid, it is obferved to be much harder, or lefs fit to make a Lather with Soap, than it was before its being frozen, from its retaining fome fmall Portion of the acid faline Particles, in the fame Manner as any Water may be rendered bard, by putting into it a few Grains of common Salt, or a few Drops of any acid Spirit.
'Tis probable thefe acid Spirits are produced every where; but being extremely volatile, and eafily driven away by Heat, they foon become diffipated in thofe hot Regions, under, or nearly under the Sun's direct Rays, unlefs they are immediately embodied by mixing with fome other Matter ; and confequently, thofe Countries nearer the Poles, whereunto they are driven by the Sun's Heat, muft abound with them. more or lefs, in proportion to the Ability or F_{4} Inabi-

72

 An univerfal volatile acid spirit, Inability of the Sun's Rays to drive them again from thence: and thefe extromely minute and active Particles, being continually in Motion, frike into, penetrate, and fix between the Pores of all Bodics capable of receiving them. Thus, mixing with faline Exfudations from, or certain Salts contained in Earths, Stones, EC. they may probably incorporate therewith, and concrete into the hexagonal Shoots of Cryftal: filling up the Interffices of Water, and becoming therewith cmbodied, they compofe that hard Subftance we call Ice *; which differs nothing from Cryftal in Clearnefs, and perhaps would bave the like Form, did not the Quantity and Situation of the Fluid prevent it ; fince we find that Water, falling in fmall Drops, is concreted with the fanae Particles into an hexangular Figure.Thefe Particles Atriking into the Bodies of living Animals occafion the Senfation of Cold: if their Quantity be great, they prosuce firft a fevere Pain, and then a Numbnefs, by impeding the Circulation of the Animal Fluids ; and if they are not driven away hy Heat from Mation or otherwile, of their Quantity be much increafed, they fop the Circulations entirely, and bring on certain

[^9]Death: and animal dead Bodies frozen become as hard as Stone. Hence it appears, that freezing is not the Refult merely of the Abferce of Heat, but is really owing to fome active and penetrating material Principles, which by mixing with other Bodies become thereby fixt: and the Exiftence of fuch Principles in the Air is farther apparent from the rufting of Metals, the Erofion of Stone, Glafs, Eic.

The Suppofition that Salt-Petre is compounded in a great Meafure of this fame volatile acid Spirit exifting in the Air, is ftrength-ened, not only by the Manner of its Production, but alfo from its ftriking the Tongue, when tafted, with a pungent Senfation of Cold, like what this fame Spirit in the Air gives: Moreover, a volatile acid Spirit may be obtained from it in confiderable Quantity, whofe Particles are fo active and powerful, that they penetrate, disjoin, and feparate the component Particles of all Metals except Gold, as well as Stones and moft other Bodies.

Suppofing fuch Spirit one of the chief Principles of Salt-Petre, may not its exceeding Volatility, when fuddenly and violently excited to Action, by the Fire contained in Sulphur kindled by Charcoal, produce all the prodigious Effects of Gunpowder *?

[^10]74 Properties of Nitre.
and alfo by certain Mixtures in the Air, become the Caufe of Thunder, Lightning, and other wonderful Phænomena?

The foregoing Conjectures, into which I fear I have been led too far by my Subject, may it is hoped be forgiven, as they are fubmitted entirely to the Confideration of better Judges, without the leaft Defign of impoling them on any one.-But to return to the known Properties of SaltPetre.

It is faid to be the only Diffolvent of Silver, as Sea-Salt is of Gold : for Silver is diffolveable in no Menftruum yet known, unlefs there be Nitre in it ; and yet if Salt be added thereto, the Mixture will no longer diffolve Silver but Gold. It preferves the Flefh of Animals from Putrefaction as well as Sea-Salt, and has the fingular Property of giving it a red Colour *. In Diftillation alfo, the Fumes that arife from Nitre are red.

- The Rooss of Madder mixed with the Food of Animals tinges their Bones of a curious Red. Vide Pbilofoph. Tranf. $\mathrm{N}^{\circ} 442$, and $4+3$, where Experiments in Proof thereof are given by Mr. Belcber, F. R.S. The fame is likewife confirmed $\mathrm{N}^{\mathrm{o}} 457$, by farther Experiments made by Mon/, Du Hanel du AIonceau.

[75]

C H A P. X.

Of Vitriol in general.

THE moft celebrated of our modern Chemifts fuppofe an acid Spirit exitting univerfally in the Air, and pervading the whole terraqueous Globe. This, they tell us, is an uniform Matter, or firtt Principle, diftributed every where throughout the Earth and Atmofphere; though of a Nature fo extremely fubtile, that it never becomes fenfible, unlefs compounded with other Subffances; but incorporating readily with different Kinds of Matter, it compofes, they fay, therewith all the Variety of Salts, Cryftals, Gems, Metals, and Minerals; the Colour, Figure, Solidity, and other-Properties whereof are owing to the Difference of fuch Admixture.

This is fometimes called * the Sal Acidum Foffile, at other Times the Vague Acid. Compounded with Earth, and an oily Matter, it is thought to be the Bafis of Sulphur ; of Alum with a cretaceous, and of Vitriol with a metalline Subftance. It is alfo fuppofed to be the faline Part or Principle of all Salts, which Monf. Homberg reduces to three Kinds only, viz. Nitre, Sea-Salt, and Yitriol.

* Vide W'oodward's Method of Folzls, p. 37.

The Configurations and Cryitals of Vitriol vary according to its different Kinds : and its Difference in Kind is fuppofed owing to different Admixtures of the Came, or different metallic Matter, with that acid Salt (or Spirit) which is the Bafis of all Kinds of Vitriol. Thus, when Copper is diffolved by and incorporated therewith, the Vitriol produced is blue; when Iron is the Metal, the Vitriol is green; and Lead, T'in, or Lapis Calaminaris mixed with Iron is imagined to render the Vitriol white. There is ftill farther Variety; but Iron appears to be a conftant and principal Ingredient in the green and white, as Copper is in the blue.

What occurred in the Examination of each comes next to be defcribed.

C H A P. XI.

Blue Vitriol.

ALL Vitriol of this Colour is fuppofed to receive its Teint from Copper; the beft is produced in Hungary and the Inand of Cyprus.

A Drop of the Solution heated a little, and examined as before mentioned, produces Cryftals round the Edges, very fhort

Blue Vitriol.

at the Beginning, but increafing gradually as reprefented Plate II. (in the Drawing called Blue Vitriol) at the Figures 1, 2, 3, which denote their Difference of Form, and the Progrefs of their Growth. Thefe cryftaline Shoots are folid, tranfparent, and regular, and reflect the Light very beautifully from their polifhed Sides and Angles. As the watery Part evaporates, Numbers of long flender Bodies refembling Hairs are feen here and there, fome lying Side by Side, as it were in little Bundles (vid. 4.) and others croffing one another, in fuch manner as to feem all radiating from a Center, and compofing ftar-like Figures, which fee at 5, 5. This Salt proceeds but flowly, and requires fome Patience before the Configurations begin to fhoot: which they do at laft, and that towards the Middle of the Drop moft commonly, after a very pretty Fafhion, as at 6 ; and it is to be obferved, that here alfo the principal Lines iflue from a Center. Any farther Defcription of the Drawing feems un'neceffary: but it is remarkable, that none of the regular Cryftals are found in this Way of Examination, though they are to be obtained in good Plenty by the ufual Method of Evaporation, Ģc.

One of thefe regular Cryftals, of the Size they are commonly found in the Shops, is reprefented by the two Figures A and. B , which
which fhew exactly the different Sides there* of. It confifts of ten Planes.

If a Piece of Iron be left for fome fhort Time in a Solution of blue Vitriol, its Surface will appear of a Copper Colour, and is really covered with Particles of Copper, either precipitated upon, or attracted by the Iron, to which they firmiy adhere, and whofe Pores they feem to fill. This may ferve to fhew after what manner fome Springs of Water are able to perform what is ufually called a Tranfmutation of Iron into Copper; which indeed is nothing more than a gradual Diffolution of the Iron, whofe Place becomes as gradually fupplied, and its Figure affumed by the minute Particles of Copper floating in the faid Water: fo that, although a Mafs of Copper may be found, after a Length of Time, inftead of a Mafs of Iron, there is no Tranfmutation in the Cafe. The whole Fact feems only to imply, that the minute Particles of Copper wherewith the Water is ftored, being much fmaller than the Pores or Interftices between the Particles of Iron, do firft of all get into and fill up the faid Interftices. We have then a Mafs compounded of Iron and Copper; but the Iron Parts thereof becoming gradually corroded and wafhed away by the Water (the mineral acid Salts it contains rendering it a Menftruum thereto) their Places are immediately occupied
by Particles of Copper, which the Water brings along with it continually; and a Body of Copper at length is fubftituted in the room of the Iron that was corroded and wafhed away. The Petrifaction of all Bodies that were originally of fome other Subftance than what they now appear to be, was probably produced after a like Manner; for it feems highly improbable that any Subftance whatever can, ftrictly fpeaking, be converted into a Subfance of fome other Kind, however Appearances may happen to impofe upon us.

Dr. Browen informs us in his Travels, of two vitriolic Springs, called the old and the new Ziment, rifing from a Copper Mine in Hungary, which in fourteen Days turn Iron left in their Waters into Copper, and that too more pure, ductile, and malleable, than any Copper extracted from the Ore: that he took out with his own Hands from one of thefe Springs the Figure of an Heart, which had been put thereinto eleven or twelve Days before, and found it as perfect Copper as it had been Iron when put in. Some, he adds, will not allow this to be a Tranfmutation, but argue, That the Waters being faturated with a Vitriol of Copper, and finding a Body fo eafy to receive it as Iron is, it infinuateth thereinto fo far as to divide and precipitate the Iron, leaving
leaving its own Subftance inftead thercof *. And this moft certainly is the Fact, though the Doctor feems to doubt it; the Purity of the Copper may be brought in Proof, and is not to be wondered at, for the minute Particles thereof, that floated in the Water, and were depofited in the Pores of the Iron, muft neceffarily be lefs blended with foreign Matter than any Copper in its Ore can be.

There are Copper Mines in the County of Wicklow in Ireland, called the Mines of Crone Bawm, or Corona Alba, on the North Side of the River Arklow, where the Water raifed from the Mines, that ufed to run away in Wafte, has lately been converted to great Profit: for by placing Iron Bars on Beams of Timber fixed for that purpofe acrofs large Pits or Cifterns, (floored with fmooth Flags and lined on the Sides with Stone and Lime) through which the Water runs, the Iron becomes incrufted in a few Days with Particles of Copper : which being fwept off from Time to Time, and falling to the Bottom, are, when a Quantity is collected, taken thence, in a fine brown Powder, confifting of Copper and the Ruft of Iron; which affords, when

- Vide Brown's Travels, 4to, p. 109.
fmelted
fimelted and purified, a rich Copper, $10 f_{0}$. per Ton more valuable than what is obtained from the Ore of the fame Mine. This was difcovered, by obferving, that fome Iron Tools of the Workmen, which had fallen accidentally into the Water, were after a while incrufted with Copper.

A Chain of thefe Pits is already made, each io Feet in Length, 4 in Width, and 8 in Depth: and as many more may be funk as People pleafe, there being a continual Supply of Water to run through them all. They make ufe of foft Iron, which attracts the Copper Particles beft, diffolves, mixes, and participates with them in form of a brown Duft. A Ton of Iron in Bars produces one Ton, nineteen Hundred, and two Quarters of brown Duft ; and each Ton of Duft fmelted, affords 16 Hundred Weight of pure Copper. There are at prefent about 500 Tons of Iron in the Pits. A large Bar of foft Iron will be diffolved in about 12 Months *.
N. B. Whilft the minute and invifible Particles of Copper are floating at Liberty

[^11] tracted by Iron ; infomuch that if a Needle or the Point of a Knife be held but for a few Minutes in a Solution of blue Vitriol, or if blue Vitriol be wetted and rubbed upon Iron, it will prefently be cafed over with Copper : and yet when thefe fame Particles are collected into a Mafs of Copper, there feems no Attraction between that Mafs and a Mafs of Iron, nor has the Magnet any fenfible Effect on Copper.

Copper affords a blue or a green Tincture, according to the Menftruum wherein it is diffolved; and therefore is fuppofed to fupply Colour to the Emerald, Sapphire, Turquoife, Lapis Lazuli, Lapis Armenus, and moft other Stones and Minerals that are either green or blue, as well as to the Subject we are at prefent treating of The amazing Variety of Blues and Greens deducible from this Metal, and the Changes of one into the other, are exceedingly worth the while of every curious Perfon to fatisfy himfelf about by a Train of eafy Experiments; the Way of making which may be found in Boyle's Treatife of Colours, in 'Boerbaave's Chemiftry, as tranflated by Dr. Shaw, Vol. II. page 342, $E^{\circ} c$. and in Hill's Letter, printed at the End of his Theophraftus, on the Effects of different Menftruumson Copper; where we are informed, that, of the Mineral Acids, Spirit of Sea-Salt, Spirit

Spirit of Nitre, and Aqua Regia, produce with this Metal different Kinds of Green: Oil of Vitriol, Oil of Sulphur, and Aqua Fortis, different Degrees of Blue: that, amongft the vegetable Acids, diftilled Vi-. negar, Juice of Lemon, and Spirit of Verdigreafe (which is a Vinegar abforbed by Copper) afford different Greens : that, of the fix'd Alkalies, the Salt of Wormwood, Pot Afhes, and Oil of Tartar per deliquium, give all a deep and delightful Blue; as do alro, among the volatile Alkalies, Spirit of Sal Armoniac, Spirit of Urine, and Spirit of Harthorn : that, of the neutral Salts, crude Sal Armoniac produces a fine Blue; native Borax a deep, and Sea-Salt. a WhitiJb Green.
"A Solution of Copper in any of the " beforementioned Acids, fo weak as " to leave the Menftruum colourlefs like "Water, may in an Inftant, by the Af"fufion of a few Drops of Oil of Tar" tar per deliquium, be converted into a "glorious Blue, or by a like Quantity of "Spirit of Nitre into a beautiful Green: " nay, by this means made Blue, may be " yet changed into Green by a larger Quan" tity of the Acid: and even when thus " made Green, again converted into its for" mer Blue, by a yet larger Quantity of the " Alkali.
"The blue Tinctures of Copper made " in the fix'd Alkalies, may alfo be diG 2 " vefted

84 Tinclure from Copper bow diffufble.
"s vefted of their Colour, and rendered co-
" lourlefs and pellucid like Water by Acids, " if the Proportionsis be carefully regarded. " The blue Liquior here is made colourlefs, " as the colourlefs Liquor was before made " Blue ; and the pellucid Liquor thus pro" duced, will exhibit all the Phenomena " before defcribed in that originally colour" lefs. To this it may be added, that even " the ftrong blue and green Solutions are ea" fily changed from Blue to Green, and from "Green to Blue in the fame Manner *". And how far Copper can diffufe its Tincture (or its Parts become divifible) may be learned from Mr. Boyle, who found a fingle Grain of Copper, diffolved in Spirit of Sal Ammoniac, would make 256806 times its own Bulk of clear Water of a blue Colour ; would give a manifeft Tincture to above 385200 , and a faint, yet diftinguifhable one, to more than 530620 times its own Bulk + .

C H A P. XII.

Green Vitriol, or Englijhl Copperas.

OUR Green Vitriol contains a great deal of Iron, but appears not to hold any Copper, which makes its Colour diffi-

> Hill's T'beophraflus, page 188, 189. + Vide Boyle Abridged, Vol. I. pagc 408.

Green Vitriol, or Englijh Copperas. 85

cult to account for: fince all mineral Subflances, whofe Colour is blue or green, have been generally fuppofed to derive their Colour from Copper.

When diffolved in Water, it conftantly drops to the Bottom a yellow ferruginous Sediment ; which being taken away, the remaining Liquor, after a due Time of Reft, affords Cryftals much clearer and of a finer Green than the Vitriol was at firft. Thefe being diffolved again throw down another yellowifh Sediment, bat in much lefs Quantity than before, and when cryftalized anew appear of a fill more lively Colour. And by repeating this Operation, they may be rendered perfectly tranfparent and of a delightful Green; tho' after all fome Iron will ftill be left, which fubjects them to contract a Ruft, if expofed to the open Air.

A Drop of the Solution, moderately heated, and applied to the Microfcope, begins to cryftalize about the Edges, and proceeds gradually, as the Figures I, 2, 3 . Plate II. N ${ }^{\circ}$ 2. reprefent, under the Name of Green Vitriol. After waiting fome Time, the Configurations puhh out, fuddenly and hattily, towards the Middle, in the Manner reprefented by Figure 4, which begins at a, and thrufts forwards and fideways at the fame Inftant, with wonderful Order and Regularity, to the other Extremity b,
where the whole Procefs is at an End. Its regular Cryftals are rarely found in this Examination, but a Couple of them, as obtained by difolving a Lump of our Subject in boiling Water, and leaving it at Reft for a Day or two, are placed at the Side of the Drop. The firft of them A, is one out of a great many that were formed on the Side of the Glafs wherein the Solution ftood, and adhered thereto. Thefe being produced in the clear Part of the Liquor, above the ferruginous thick Sediment which had been precipitated but was not taken away, were much greener and more tranfparent than the Vitriol firf diffolved. Excepting fome Irregularities, they were all of the fame Shape, with Sides nearly correfponding.

The Figure B reprefents an Cctaëdron, that being the general Shape of many Cryftals formed in the yellow thich Sediment at the Bottom, a Forinight or three Weeks after, the clearer Part of the Liquor having been poured away: and confequently the Difference of Figure between this and the former munt be imputed to the much greater Proportion of Iron in this than that.

Our green Vitriol, or Englifh Copperas, is made from the Pyritic, that are found in great Abundance on the Shores of Suffex, Effex, Kent, \&c. Thefe Bodies are

Green Vitriol, or Englijb Copperas. 87 of a ponderous and compact Subitance, contain Metal and Sulphur, have a rufly ferruginous Outfide, but internally appear, when broken, fometimes of the Colour of Brafs, Silvery fometimes, and fometimes like Iron; the Matter compofing them is difpofed in Strix, or a linear Dirction diverging from a central Point to the Circumference, if the Stones have any thing of a circular or cylindric Figure; or lying parallel and perpendicular to the flat Sides, if their Form be flattifh. After being long expofed in Heaps to the Air and Rain, the Salts begin to act, vitriolic Efflorefcences pufh out upon the Surface, they become brittle, fall to Pieces, and difiolve into a Liquor. This Liquor, when boiled two or three Days in a leaden Cauldron, (Pieces of Iron being thrown in from Time to Time during the boiling and diffolving in the faid Liquor) is difpofed afterwards in convenient Veffels, where it ftands for about a Fortnight to cryftalize into Vitriol. A great Work of this Kind is, or was not long ago, carried on at Deptford.

C H A P. XIII.

Wbite Vitriol.

THE White Vitriol from Goflar in Germany, as well as that from Hungary, contains fome little Copper, but the common Sort with us has no other Metal in it befides Iron, unlefs, as fome fuppofe, there is alfo a fmall Quantity of Lead or Tin. The Iron contamed in the Green and Wbite, as well as the Copper in the Blue, is not in any conftant Proportion, but frequently more or lefs in different Pieces of the fame Parcel, which occafions fome Variety in Experiments made therewith.

A Drop of the Solution of white Vitriol begins to Thoot at the Edges, by a gentle Degree of Heat, either in fmall angular Figures, or minute curvilinear Spiculæ, both which are reprefented in Plate II. at I, I. The former of thefe fpreading confiderably in Breadth, and protruding very flowly forwards, produce thofe lineated Figures Chewn at 2 on one Side of the Drop, which are formed by two Planes inclining to one another in an Angle of about 120 Degrees: the latter, viz. the Spicula, fpreading likewife and flattening at the Ends, fhew themfelves nearly as reprefented by 2 on the contrary Side. Some

Some of them however fhoot farther into the Drop, in the Manner fhewn at 3, 4, and 5 : and many fo thot out have other fmaller ones protruded from their Sides, parallel to one another, and forming an Angle with their main Stem of about 60 Degrees, as at $a, a:$ when the Procefs is nearly over, many extremely minute Spicule arife in the Interfpaces; fome uniting in, or rather fhooting from Centers, and making a very pretty + radiated Appearance, like what was before obferved in the Blue Vitriol; whilft others of the fame Spiculde are feen feattered and difperfed about the Drop in all Directions, as at 8. There Spicula may be termed a Characteriftic of the Vitriols, being ufually found in all of them, when examined by the Microfcope with Care; but as fometimes the Green is feen without them, I have taken no Notice of them there.

The Figure hewn at 6 is reldom to be met with, but when the Fluid Part of the Drop is fuffered to evaporate without any Heat; and it feems nearly to approach the regular Cryftals, which are next to be defcribed.

As a Solution of our prefent Subject does not fo eafily cryftalize by the common

[^12]Methods,

Methods, after trying feveral Times to make it do fo without Succefs, I have contented myfelf with examining the * Gilla or Sal V itrioli made by the Chemifts: two Figures whereof, A B, as magnified above a thoufand times in the Area, are given at the Side of the Drop. They appeai to be quadrilateral Columns, the Inclination of whofe Sides is oblique, having generally a quadrilateral Pyramid at each End, formed of triangular Sides correfponding to thofe of the Column, as at A ; but fometimes thefe triangular Planes interfect, in fuch a Manner that the Angle at the Apex is comprehended under only three of them, as at B.

Vitriol in confiderable Abundance is found in Subftance and of different Colours, blue, green, white, and red, in feveral Parts of Hungary, Germany, and other Countries: but very little, if any, native Vitriol is ever found in Mafies or Lumps in England; all produced here being obtained by Art from the Pyrita, and of the white the greateft Part comes to us from Abroad. The Appearance of fuch White Vitriol is extremely like Loaf Sugar ; it has a fweetilh difagreeable ftiptic Tafte, and when

[^13]diffolved in Water, throws to the Bottom a ferruginous Sediment like the Green.

It would be endlefs to enumerate all the Ufes of Vitriol. Sir Kerielme Digby's fympathetic Powder, fo famous in its Day for the Cure of Wounds, was nothing elfe but Vitriol expofed to the Summer's Sun for feveral Days and powdered. But amongft all the reft, its being an Ingredient abfolutely neceffary for the making of Ink is not the leaft to be regarded. Any Vitriol that contains Iron will ferve to this Purpofe, of what Colour foever it bc: the Green however is commonly preferred, as holding a greater Quantity of that Metal: but the White fometimes is not lefs ftocked with it, and then will do full as well. Galls unripe, or gathered when they are of a blueih Colour, before they come to their full Growth, being beaten to Powder, and infufed in Water, give the Water a ftiptic Tafte, without altering its Colour much; but a proportionable Quantity of powdered Vitriol, or a Solution of Vitriol, being mixed therewith, turns it inftantly as black as Ink, and wants only a little Gum to make it Ink indeed. A Decoction of the dried Lcaves of red Rofes, of Sage, Oak Leaves, or the Rinds of Pomegranates, produces the fame Appearance therewith. It alfo in like Manner blackens an Infufion of Green Tea; Colour: the Proportion of the Vitriol may likewife be gueffed at by the Deepnefs or Palenefs of the Tincture.
On writing with a Solution of Green Vitriol, nothing is feen upon the Paper when dry: but by rubbing it over with a Decoction of Galls, what was written becomes black and legible. Spirit of Vitriol wiped gently upon this, makes it vanifh again immediately: Oil of Tartar per deliquium reftores the Letters once more, though not black but yellowifh \dagger.

A ftrong Decoction of red Rofes mixed with a Solution of Vitriol produces a black Ink, which on dropping Spirit of Nitre into it becomes inftantly red, and is farther convertible into a greyif Liquor, by adding a little of the volatile Spirit of Sal Armoniac.

Good Writing Ink being not always or every where to be procured, it will not perhaps be unacceptable to give here an cafy Way of making it, which I can recommend from many Years Experience.

To one Quart of Rain Water, or foft River Water, put four Ounces of blue

[^14]Galls bruifed, two Ounces of green Vitriol or Copperas, and two Ounces of Gum Arabic grofly powdered. Let the Mixture be well fhaken or ftirr'd about now and then, and in twenty-four Hours it will be fit for Ufe. It is moft conveniently made in a wide-mouthed Bottle that will hold near double the Quantity, where it may fometimes be fhaken together brifkly; but be fure you let it fettle again before you pour any off. When you have ufed all that can be got off clear, a little more than half the Quantity of the fame Ingredients will make you another Quart.

What is written with this Ink looks pale at firft, but after a few hours becomes of a fine black, and I believe will never change.

C H A P. XIV.

Difilled Verdigrease.

vERDIGREASE is a blueifh green Efflorefcence * or Ruft, produced on Plates of Copper, by corroding the Surface thereof with that penetrating acid Spirit which the Hurks of Grapes abound with after they have been prefs'd and laid together to ferment. This Ruft

[^15]
94

Difitled Verdigreafe.
being digefted with diftilled Vinegar in a confiderable Degree of Heat, and diffolving partly therein, affords a Liquor of a moft beautiful green Colour, which after Evaporation, being fet in a cold Place, produces tranfparent and elegant green Cryfals, that are called ufually by the Name of Difilled Verdigreafe, but are really a Vitriol loaded with the pureft Particles of the Copper.

If thefe Cryfials are diffolved in warm Water, and a Drop of it be applied to the Microfcope immediately, it ufualiy produces Abundance of the regular Figures $1,2,3,4$, $5,6,7$, (exhibited at the Side of the fourth Drawing, Plate II.) without forming any confiderable Configuration: but if the Solution is fuffered to fand quiet for a few Hours, and a Drop of it be heated over the Fire on a Slip of Glafs, till it begins to concrete about the Sides, and then examined, fharp-pointed folid Figures (bifected by a Line through the Middle, from which they are cut away towards the Edges) will be feen, hlooting forwards, as reprefented 1, I, I: which Figures are oftentimes friated very prettily from the Middle Line to the Edges, obliquely, as z, 2, may ferve to thew. They both arife frequently in Clufters, and fhooting from a Center, as at 3,3 .

The forementioned Figures are a long while growing ; and whilft they are doing
fo, feveral regular Cryftals appear forming in different Parts of the Drop, of the moft lovely Emerald Colour, and reflecting the Light from their Sides and Angles, which are as exactly difpofed and finely polihhed as if they had been cut by the moot fkilful Jeweller. There Cryftals are fhewn in the Drop at 4, 4, but much better, becaufe magnified a great deal more, at the Side of it, by the Figures 1, 2, 3, 4, 5, 6, 7 .
No Configurations form themfelves in the Middle of the Drop till the Fluid be nearly evaporated, but when they begin to form they proceed fomewhat haftily, and therefore muft be attended clofely. Their common Figure refembles two long $/ \int$, croffing cach other in an Angle of about 60 Degrees, and fhooting Branches every Way: each of which again protrudes other Branches from one, and fometimes both its Sides, making together an Appearance like four Leaves of Fern conjoined by their Stalks, as at 5,5 . Separate Clufters of the fame flarp-pointed Figures, as thofe at the Edges of the Drop, are formed alfo frequently in the Middle of it, as 6 . Sometimes alfo they put on another Form like the Leaves of Dandelion, as at 7 . Very beautiful Figures are likewife produced by a Kind of Combination of fharp Points and Branches, in the Manner reprefented 8, 8 .

All the beforementioned appear of a moft lovely green Colour, but deeper or paler according to the Time of their Production; the firft produced being conftantly the deepeft. Towards the End of the Procefs fome circular Figures are formed, extremely thin, and fo flightly tinged with green that they are almoft colourlefs, but with Lines radiating from a Center to the Circumference, like the ftar-like Figures of Alum hereafter to be defcribed. Thefe are thewn 9, 9. When all feems in a Manner over, Bundles of Hair-like Bodies appear frequently fcattered here and there throughout the Drop, in the fame Manner as defrribed in the blue and white Vitriols.

C H A P. XV.

> ALUM.

THE Configurations of this Salt abound with Beauty and Variety, and prove more or lefs perfect according to the Strength of the Solution, and the Degree of Heat employed in making the Experiment; to judge of which a little Experience will be found , needful.

The Solution, however fated with Alum, will not be found over-ftrong after ftanding

fome Days, for in that Time it will have precipitated many Cryfals to the Bottom, whereby the Liquor is fometimes left too weak for our Purpofe; but then, by holding the Phial over or near a Fire, the Cryftals will again diffolve, and be taken up a-new into the Fluid. 'Tis not however advileable to make ufe of it as foon as this is done, unlefs we want to produce nothing elfe but Cryftals : for if, after this, it be employed before it has had a little Time to cool and fettle, it is very apt to form into Crytals only: but when it has ftood about half an Hour, a Drop, placed on a Slip of Glafs and heated properly, exhibits commonly at the beginning a dark Cloud, which appears in Motion lomewhere near the Euge, and runs pretty fwiftly both to the Left and Right, until it is either fopped by the Intervention of Come regular Cryftals, or elfe proceeds onwards both Ways at once, and nearly of the fame Height, till having furrounded the whole Drop the two Ends ruh together and join ; the Progrefs towards which is attempted to be hewn, Plate III. No I. a a.

This cloudy Part of the Drop, that feems violently agitated whilft it is running round, appears on a ftrict Examination to confift of Salts, fhot into long and very flender Lines, much finer than the fmalleft Hair, which crofs one another at right Angles, and Form Vol. II.

H oblique plain Sides $b b$, and which have all a Tendency towards the Figures of the regular Cryftals to be defcribed prefently.

But it happens frequently, that in fome Parts of the Drop many minute and circular Figures are feen, rifing at fome little Diftances from the Edge, whilt the abovementioned Operations are performing in other Places thereof; which minute Figures enlarging themfelves continuially, appear at laft of a ftar-like Form, or with Lines radiating and diverging from a Center, in the Manner reprefented $c c$.

After the Bufinefs is over about the Edges, a good deal of Patience will be requifite to wait for the Configurations in the Middle of the Drop, which feldom begin till the Fluid feems almoft wholly evaporated; when on a fudden many ftrait Lines appear pufhing forwards, whofe Sides or Edges are jagged, and from which other fimilar ftrait and jugged I.ines fhoot out at right Angles with the firt; thefe again have other fimall ones of the fanse Kind flooting likewife from theminelves, and compofe altogether a moft beautiful and clegant Configuration, the Order of which is attempted to be hewn at D.

Each

Each of thefe Lines increafing in Breadth towards its End, appears fomewhat clubheaded, as eee.

Sometimes inftead of fending Branches from their Sides, many of thefe Lines rife parallel to each other, refembling a Kind of Palifadoe, and having numberlefs minute tranfverfe Lines running between them, as at F .

But the mof wonderful Part of all, tho' not produceable without an exact Degree of Heat and right Management, is the dark Ground-work fhewn at G, which confifts of an almof Infinity of parallel Lines, having others crofing them at right Angles, and producing a Variety farce conceivable from Lines difpofed in no other Manner: the Direction of the Lines (which are exquifitely ftrait and delicate) being fo frequently and differently counter-changed, that one would think it the Refult of long Study and Contrivance.

During the Time this Ground-work is forming, certain lucid Points prefent themfelves to view (on one Side thereof moft commonly) which Points grow larger continually, with Radiations from a Center, and become Star-like Figures, in the Manner of thole before mentioned. Several of them likewife thoot out long Tails, which give them the Appearance of Comets : and 2t the End of all, a dark Lineation, in H 2 various
various Directions, darts frequently throughs and occupies all or moft of the Spaces between them, making thereby no ill Reprefentation, when viewed by Candle-Light, of a Night-Sky, illuminated with fhining Stars and tailed Comets, and rendering the whole Scene extremely whimfical and pretty.

Nor do thefe Configurations break away, or diffolve, foon after their being formed, as many others do; but may be preferved on the Glafs in good Perfection for Weeks or Months, if Care be taken neither to exclude the Air wholly from them, nor put them in a moift Place: for in either Cafe they will be foon deftroyed.

Being defirous to preferve fome exceeding fine Star and Comet-like Figures, I faftened another Glafs of its own Size upon the Slip where they were formed; having firft placed thin Pieces of Cork between, to prevent the Glafies from touching, and after all fopped the Ends and Sides with Sealing Wax, thereby to keep out the Air, which I imagined would fpoil them : but contrary to my Expectation, in two Days the Figures were all obliterated; whereas another Configuration, covered with a Slip of Glafs to preferve it from being touched, but whofe Sides were open to the Air, continued in great Perfection at leaft two Ycars, and then too was fpoiled by Accident.
bow to produce and preferve. IOI

The fame Thing likewife happens to Saccharum Saturni, Ens Veneris, Salt of Amber, and fome other faline Subftances, whore elegant Configurations may be long preferved between Slips of Glafs kept afunder as above directed, provided the Air be not pent up with them, and that the Place you put them in be dry. I have at this Time feveral Configurations formed fome Years ago ; and it will fave much Trouble, and be moft agreeable to People not overftock'd with Patience, to have always as many kinds as one can thus ready, to fhew fuch Friends whofe Curiofity may not be fufficient to make them attend to the whole Procefs.

A great deal of Exactnefs and Nicety is requifite as to the Degree of Heat, to make one and the fame Drop produce all the Configurations prefented in the Plate; tho' you will certainly meet with feveral of them in every Drop you try, unlefs the Heat be too long continued; in which Cafe the Fluid becomes hardened by the Fire into a kind of tranfparent Gluten, which never fhoots at all, is not eafily difiolveable, or to be got uff the Glafs without fome Pains. On the other hand, if the Heat be violent, though not long, it fhoots too faft, with much Irregularity and Confufion.

The regular Crytals are often formed in the fame Drop with the other Configurations, as at f. But if not, they may eafily be produced, either by ufing a Solution made with hot Water, before it cools ; or by placing a Drop of a well-faturated Solution, when cold, on a Slip of Glafs, and fuffering the Fluid to evaporate without any Heat at all. Cryftals will alfo be formed by Precipitation after the Solution has ftood fome Time.

After numberlefs Obfervations to determine the Crytals of Alum, I find amongit them the following Variey :
Some are exactly regular Octaëdra, compofed of eight equilateral Triangles, as the Figure A.

But as they lie moft frequently on one of their triangular Bafes, they appear in the Manner fhewn at B.

Others appear like the above with their folid Angles cut off, forming thereby a Figure of fourteen Sides, eight of which are Hexagons, and the other fix Squares, as C .

The Figure D frequently prefents itfelf, and feems alfo compoled of fourteen Planes (viz. 12 quadrilateral, and two hexagonal) the Planes underneath being fuppofed to correfpond in Number and Figure with thofe that appear above.

> E repre-

E reprefents an eight-fided Figure, confifting of two triangular, two hexagonal, and four quadrilateral Planes, two whereof flope downwards from the upper hexangular Plane, and the other two upwards from the under one.

The Figure at F is compounded of eight Planes, the undermof whereof is a large equilateral Triangle, from each Side of which a floping quadrilateral Plane proceeds. Thefe Planes are Trapezoids, each of them having a Side in common with that of the Triangle, another fhorter one parallel thereto, and two others floping one towards the other, and towards the Side of the Triangle, in a Direction of about twenty Degrees.

The Plane which lies parallel to the Triangle (which Plane in the prefent Pigure is next the Eye) is hexagonal, three of its Sides being made up of the ihorter parallel Sides of the Trapezia : the other three (which are lefs than thefe, being cut down perpendicularly, fo as to meet the Angles of the large Triangle) form three other finaller Triangles, each whereof has one Side in common with the Hexagon, and the other two with the neighbouring Trapezoids.

Our Alum is obtained from a blueifh mineral Subftance refembling Slate, which after being calcined and fteeped in Water

104 Alum bow and where produced:

for a due Time, that Water when boiled fufficiently in Pans of Lead (the Lees of Seaweed Anhes called Kelp, and the Quantity of Urine being mixt therewith) produces Shoots of Alum, after ftanding a few Days. But as fuch Shoots are feldom clean enough at firft for Sale, they commonly are wafhed with or diffolved again in Water freed from their Impurities, and fet to concrete a-new.

Vaft Quantities are made in Yorkfbire and Lancafbire, moft of the Hills between Scarborougb and the River Tees, as well as thofe near Prefon, abounding with this Mineral ; the Salts of which being difiolved and put into Action by the Moifture of the Air, if thereto expofed, without being calcin'd, the Mineral falls in Pieces, and yields a Liquor whereof Copperas or green Vitriol may be made *.

Alum may allo be procured from certain Earths by pretty much the fame Means. An Earth of this Kind now lies before me, which was brought from Africa, where a confiderable Tract of Land is faid to be of

[^16]nearly a-kin to Vitriol.
the fame Sort *. It taftes exactly like Alum, and in the South Sea Year, 1720, a Quantity was imported in Hopes of making it turn to good Account: but the Mifchiefs fuffered from other Projects at that Time, difcouraged People from embarking in this, and we have heard no more of it fince; nor indeed, as Alum can be made fo cheap from Materials found at Home, does it feem worth while to fend fo far on the fame Account.

Alum feems fo nearly a-kin to Vitriol, that the Addition of Copper or Iron is only wanting to make it the fame Thing; as may be proved by a Diftillation of it into an acid Spirit with either of them, whereby it becomes good Vitriol. On the other hand, Vitriol, when freed from its metallic Particles, becomes aluminous, and yields on Diftillation a Spirit undiftinguifhable by the niceft Scrutiny from that of Alum + .

[^17]
[106]

C H A P. XVI.

Bo.rax.

BORAX is a faline Subftance, very difficult in Solution unlefs in boiling Water, and even then requiring, according to Boerbaave, twenty Times its own Weight.

When a Drop is given to be examined by the Microfcope, if it be held too long over the Fire no Cryftals will fhoot, but it will harden upon the Slip into a tranfparent Matter much refembling Glafs. The beft Way is to give it a brifk Heat for about one Second of Time, and then applying it, the Cryftals will quickly be feen forming about its Edges, as in Plate III. No II. where their Beginning and Progrefs are fo reprefented as to need no farther Defcription.

In the middle Parts of the Drop no Cryftals at all arife, but there are feveral tranfparent circular Figures, that from mere Specks grow gradually bigger, till they refemble fimall Drops of Oil floating upon the Surface of Water : thefe alfo are fhewn in the Drawing.

This Salt is faid to be found in India, Perfia, and Tartary, and to be brought from thofe Countries rough and foul, in Lumps

Lumps or Cryftals, of a yellowifh and fometimes of a dirty green Colour: but we. really know little thereof with Certainty. The Venetians made great Profit heretofore by purifying it for Sale *, but that Trade at prefent is chiefly carried on by the Dutch; though I am told the Secret is become known, and has lately been practifed with good Succefs in England. It ferves the fame Purpofes of fufing and foldering Gold and other Metals, as the Cbryocolla of the Ancients did, for which Reafon it is frequently called by the fame Name, though theirs was quite another kind of Subftance, the Knowledge whereof is probably loft to us. Its glafly Quality renders it ufeful in dying, to give a Gloffinefs to Silks ; and Dr. Share proves (in the twentieth of his Chemical Lectures, Experiment 3d.) that by means of this Salt a Kind of Glafs may be made of an extraordinary Degree of Hardnefs; and imagines the Arts of Enamelling, and of imitating precious Stones, may be greatly improved thereby + .

* Vid. Sbaw's Tranflation of Boerbaave's Cbemifiry, Vol. I. p. 110 , in the Notes.
+ Rough Borax is called Tincal, or Tincar. Geoffroy fays, a falt, muddy, greenifh Water, found in fome Copper Mines, evaporated to a certain Degree, then kept for feveral Months in Pits, whore Sides and Bottoms are plaiftered with the Mud of the fame Mines mixt with Animal Fat, the Pits being alfo covered with the fame Plaifter, produces the Lumps or Cryftals of anrefined Borax.

When

108 Borax defcribed, and its UJe.
When refined and pure it is brought in large cryftaline Shoots clean and white, about the Clearnefs and Hardnefs of Alum, wherewith it is fometimes adulterated: to the Tafte it is almoft infipid, but fomewhat fmooth and oily, and the more fo the lefs it has been purified, for in its foul State 'tis confiderably fat and greafy.

A regular Cryftal of fuch purified Borax, as taken by the Microfcope, is fhewn on the Side of the Drop at A.

Some Years ago my worthy Friend Mr. Peter Ciolinfon, F. R. S. favoured me with a Subftance faid to be brought from Perfia, and called Native Borax: 'tis in fmall, irregular, flattifh Pieces, of a greyifh white Colour, wherein, if nicely examined, abundance of Shining Particles may be difcerned: it is light and porous, of a very brittle Confiftence, fomewhat urinous, and more pungent in Tafte than the Kind before defcribed. A Solution of this did not hoot at all into Cryftals, but in many Examinations filled the whole Drop with figurd Bodies like that at B ; which, from being barely vifible, enlarged pretty faft, to a Size (when viewed by the fourth Magnifier) as big in Appearance as the Figure here exhibited.

Thefe quickly fall to Pieces, and become diffolved by the Air.

$$
C H A P
$$

[109]

C If A P. XVII.

Salt Ammoniac, or Armoniac.
WHAT the Ancients called by this Name, is fuppofed to have been a Salt generated in the Earth or Sande, from the Urine and Dung of Camels (made ufe of by the Multitudes of Pilgrims that reforted to the Temple of fupiter Aminon) which, being fublimed by the Sun, produced this Kind of Salt ; and the Difure of that Cuftom for many Ages, is imagined to be the Reafon why none of it is now found. What we have at prefent is undoubtedly factitious, being made of Urine, Sea-Salt, and Soot. It is fuppofed to come from Egypt or Syria, in round Cakes near three Inches thick, and about half a Foot in Diameter : in Colour it is greyifh on one Side, and appearing, for the moft Part, black, or rather footy on the other. When broke, the Infide (if good) is white, tranfparent, and cryftaline, and in Appearance much like Camphire. We are told, that in thofe Countries they collect a Soot from the burning of Camel's Dung, which they fprinkle with a Solution of Salt made in Urine of the fame Animal, and then fublime in Glafs Veffels, till a Cake is thrown up to the Top of each, correfpondent to the Shape of the Glafs, which they muft break
break in order to get it out.-All this may perhaps be true, but I am apt to think it is made much nearer home, and by more eafy means.

Some of this Salt diffolved in Water, and a Drop thereof placed on a Slip of Glafs, to be examined by the Microfcope, will be found to thoot with a fmall Degree of Heat; which muft be very carefully obferved, for if more Heat than juft enough be given to it, the Configurations will run into one another, and make the Whole appear in great Confufion.

It begins with Mooting from the Edges great Numbers of Marp, but thick and broad Spicula, from whofe Sides are protruded as they rife many others of the fame Shape, but very fhort, parallel to each other, but perpendicular to their main Stem, as at I. Plate III. No.III. There Spicula arrange themfelves in all Directions, but for the mof Part obliquely to the Plane from whence they rife, and many are frequently feen parallel to one another: which Particulars the Figure endeavours to exprefs.at I, I._As they continue to pufh forwards (which they do without increafing much in Breadth) fome fhoot from them the fmall spiculce only, as at 2. Others, after they are nearly come to their full Growth, divide into two Branches, in a Manner different from all other Kinds

Salt Aminoniac.

of Salt I have ever feen, by the Splitting of the Stem, longitudinally, from the Top almoft to the Edges of the Drop, but without any Shootings from the Infide, as is reprefented at 3.-Other Branches, befides the fmall Spicula mentioned above, protrude longer ones of the fame Form, from whence others alfo proceed: which others fhoot alfo fmaller ones from them, and fo on to many Gradations, as at 4.

Before the Middle of the Drop begins. to Choot, feveral exceedingly minute Bodies may be difcerned at the Bottom of the Fluid. Thefe rife to the Top in a little while, and as foon as their Form can be diftinguifhed, whilft yet extremely fmall, they plainly wear the fame Shape exactly, which they afterwards appear in when grown much larger, as is Mhewn at 5.-Their Growth is very quick, and pretty equal for a Time, but at lingth fome one Branch gets as it were the Mlaftery, and fhooting farther than the reft, forms the Figure 6. The other Branches enlarge but little afterwards, all the Attraction feeming biaffed to this alone, from which more Branches being protruded, and they again protruding others, the whole appears like Figure 8.
'Tis not uncommon to fee in the Middle of the Drop fome different Configurations, where, inftead of the ftrait Stems defcribed above,
above, there is formed a Kind of Zigzag, with Spicula like thofe in the other Figures, as at 7 .

To obtain the Cryftals of this Salt, 'tis necefiary to place a Drop of a frefh Solution (made in warm Water) before the Microfcope, without giving it any other Heat than the Warmth of the Water. The regular Cryftals will then appear as reprefented at the Side of the Drop A, B, C. The laft of which Figures C is produced from the fecond B, by new Formations at each Corner of the crofs Branches, when the whole Procefs is nearly ended: but thefe Cryftals are rarely feen, unlefs the Solution be examined as foon as made.

Salt Ammoniac is particularly remarkable for rendering W ater wherein it is difiolved colder than any other Salt can do, and even equal in Degree to Water that is near freezing. Monfieur Geoffroy placed a common Thermometer of eighteen Inches long in a Phial wherein he had put a Pint of Water, and let it remain therein a fufficient Time to adjuft itfelf to the Temperature of the Water: he then put into the Water four Ounces of Salt Ammoniac, and in lefs than a Quarter of an Hour the Liquor in the Thermometer defcended two Inches and nine Lines. He then tried the fame Experiment with Salt-Petre inftead of Salt Ammoniac, ufing the like Precautions, and the

Liquor

Liquor defcended one Inch and three Lines, Vitriol made it defcend not quite an Inch, and Sea-Salt but two Lines.

Monfieur Homberg orders a Pound of Salt Ammoniac and a Pound of corrofive Sublimate to be feparately reduced to Powder ; then, after mixing them well together, he directs them to be put into a Glafs Bottle, and a Pint and a half of diftilled Vinegar to be poured thereon. This done, and the Compofition being fhaken together brifkly, it will become fo cold, that a Man can but ill endure the Veffel in his Hands even in the Summer-time. He fays, that once, as he was making this Experiment, the Mixture happened to freeze ; and Monfieur Geoffroy tells us the like Accident befel him once, on diffolving a large Quantity of Salt Ammoniac in Water, fome Drops on the Outfide of the Glafs freezing: the wet Straw whereon it ftood, was likewife faftened thereto by Ice. But though he try'd many times he could never produce Ice again.

It is not my Purpofe to enumerate the feveral Ufes of this Salt; I hall therefore conclude with obferving, that it is extremely pungent, converts Aqua Fortis into an Aqua Regia, caufes Tin to adhere to Iron, and difiolved in common Water, is, I am informed, a Secret for the taking away of Warts.

Vol. II,
$I \quad C H A P$.

C H A P. XVIII.

> Salt of Lead.

THIS Salt, which from the Sweetnefs of its Talle is ufually called Sugar of Lead, is prepared from Cerufe or White Lead digefted with diftilled Vinegar in a Sand Heat to a Diffolution : then evaporated till a Film arifes, and fet in a cold Place to cryftalize. It is therefore Lead reduced into the Form of a Salt by the Acid of Vinegar, for Cerufe is itlelf nothing elfe but the Ruft of Lead corroded by Vinegar.

A little of this Salt diffolved in hot Water, which it immediatcly renders milizy, after ftanding a Quarter of an Hour to fubfide, is in a fit Condition for an Examination by the Miorofcope. A Diop of it then applied on a Slip of Glafs, and held over the Fire to put the Particles in Action, will be feen forming round the Edge a pretty even and regular Border, of a clear and tranfparent Film or glewy Subfance; (See Plate IV. $\left.\mathrm{N}^{0} \mathrm{I} . \begin{array}{lll}a & a & a \\ a\end{array}\right)$ which, if too fudden and violent Heat be given, runs over the whole Area of the Drop, and hardens, and fo fixes on the Glafs, as not to be got off without much Difficulty. But if a moderate Warmth be made ufe of (which likewife muft not be too long continued) this Bordei
proceeds a litle Way only into the Drop, with a Kind of radiated Figure compofed of a Number of fine Lines, or rather Bundles of Lines, beginning from Centers in the interior Edge of the Border, and fpreading out at nearly equal Diftances froin each other every Way towards the Exterior, $\delta b b b$. However it is obfervable that the Diftances between the Lines are filled up with the glewy Matter, nor do the Lines themfelves feem detached therefrom, but are formed together with it. From there fame Centers are produced afterwards a Radiation alfo inwards towards the Middle of the Drop, compofed of Parallelograms of different Lengths and Breadths; from one and fometimes both the Angles whereof there are frequently feen Shootings fo exceedingly flender, that they are perhaps the beft Reprefentation poffible of a mathematical Line, which appear like a Prolongation of one or both the Sides. The Extremities of thefe Parallelograms are moft commonly cut off at right Angles, but they are fometimes alfo feen oblique. The whole of this Defcription is fhewn at c c c c.

Centers with the like Radii iffuing from them, and fome of the glutinous Matter for their Root, are fometimes formed in the Drop, intirely detached from the Edges, and in thefe it is very frequent to find a Sort of fecondary Radii proceeding from fome one
of the primary ones, and others from thens again to a great Number of Gradations, forming thereby a very pretty Figure, the Reprefentation of which is given at D.

Give me Leave now to obferve, that radiated Figures of Spar much refembling thefe, and which probably owe their Form to the fame Principles, are fometimes found in Lead-Mines, of which I have at this Time a Specimen before me.

Notwithfanding it may feem, wandering from my Purpofe, I thould think myfelf greatly wanting in my Duty towards Mankind, if I clofed this Chapter without warning them of the Mifchiefs that may arife from taking this or any other Preparation of Lead internally, as the poifonous Qualities of that Metal are not to be fubdued or cured, and thofe who have much to do with: it feldom fail fadly to experience its bad Effects. I am fenfible this Salt has frequently been prefcribed in Quinfies, Inflammations, and other Diforders where great Cooling inas been judged neceffary: But Dr. Boerbaave declares he never knew it given with Succefs, nor durft himfelf ever prefrribe it internally, from his Knowledge that there is fearce a more deceitful and defructive Poifon thàn this, which returns toCerufe as foon as the Acid is abforbed therefrom by any thing it may meet with : and that it proves afterwards a moft dangerous

Salt of Tin.

and incurable Poifon. Cerufe, the fine white Powder of Lead, drawn with the Breath into the Lungs, occations a moft violent and mortal Afthma; fwallowed with the Spittle it produces inveterate Diftempers in the Vifcera, intolerable Faintings, Pains, Obfructions, and at laft Death itfelf: which terrible Effects are feen daily amongtt thofe who work in Lead, but principally amongft the White-Lead Makers *.

The Fumes of meited Lead are a Secret with fome for the fixing of Quickfilver, and rendering it fo folid that it may be caft into Moulds; and Images may be formed of it, which when cold, are not only hard, but fomewhat brittle, like Regulus of Antimony + .

C H A P. XIX.

Salt of TIN.

NALT of Tin is obtained in the fame Manner as Salt of Lead, by digefting: the calcined Metal in diftilled Vinegar, and fetting it, when poured off, in a cool Place, for the Salts to fhoot: which they will do in the Form of Cubes.

- Boerbaave's Cbemifiry by Sbarv, Vol. II. pag. 286.
+ Vid. Sberley on the Origin of Bodies, pag. 18.

This cubic Salt being difiolved in Water, and a Drop of the Solution placed under the Microfope, in the Manner before directed, produces fuch an Appearance at the Edges of the Drop as a a reprefent, confifting of Octaëdra, partly tranfparent, ftanding on long Necks, at fmall Diftances from each other, with angular Shoots between them. At the fame time folid and regular opake Cubes will be feen forming themfelves in other Parts of the Drop, vid. b6. Plate IV.

Thefe may be difcerned when their magnified Size is extremely fmall; and their Bulk increafes under the Eye, continually, till the Water is nearly evaporated.

In the Midft of the fame Drop, and in feveral Piaces thereof, very different Figures will be likewife formed; particularly great Numbers of flat, thin, tranfparent, hexangular Liodies, $c c c$; fome amongft which are thicker, as e; and a few appear more folid, and with fix floping Sides, rifing to a Point as if cut and polifhed, vid. d.

The Figure f is compofed of two high Pyramids united at their Bafe *. Some, in this kind of Form, are found truncated at one of their Ends, and others at both;

[^18]but then they appear like flat Bodies, not having the four Sides of a Pyramid; as a few of them in the Drawing fhew.-Several of the hexagonal Bodies may be obferved with floping Sides, forming a fimooth triangular rifing Plane, whofe Angles point to three intermediate Sides of the Hexagon, vid. g : and fome have a double Triangle; as another of the Figures fhews.-b reprefents one of the folid Cubes.

Thefe Cryftals are prefently deftroyed by the Air, and converted into a Calx.

The Drawings in this Plate fhew, that notwithftanding the feeming Affinity of the two Metals, the Configurations of Salt of Tin bear not the leaft Refemblance to thofe of Salt of Lead. In convulfive and epileptic Cafes, Salt of Tin is given internally with good Succefs.

C H A P. XX.

Ens Veneris.

AS Chemifts give the Name of Venus to Copper, one would imagine their Ens Veneris to be a Preparation of that Metal; whereas it is in reality a Sublimation of the Salt of Steel or Iron * with Sal Ammoniac;

* Green Vitriol is ufually employed inftead of Salt of Steel.

$$
I 4 \quad \text { and }
$$

and therefore might be called Ens Martis with better Reafon. It muft however be acknowledged, that blue Vitriol was employed formerly inftead of Salt of Steel; and Tbat, being impregnated with Copper, rendered the Name lefs improper: but the Ens Veneris our Shops afford at prefent, has nothing of Copper in it.

It diffolves eafily in Water, and gives to the Solution fated with it a Colour refembling that of Mountain Wine: which Colour its Cryftals likewife retaining, appear (as they form before the Microfcope) like the mof beautiful Cbryfolites or Topazes, feemingly cut with the greatert Elegance, in Shape as the Plate fhews; and reflecting an extraordinary Luftre from their polifhed Surfaces, if the Candle be fo fhifted as to favour its being feen.

After the Solution has ftood an Hour or two to fettle, (for if ufed immediately its Foulnefs will prove inconvenient) a Drop thercof placed on a Slip of Glafs, and warmed a little over the Candle, begins fhooting from the Edges with folid tranfparent Angles, as (in the Drawing) a a. Plate IV. Thefe, if only a gentle Heat has been given, will fometimes form, then diffolve, and afterwards form again.

The Cryftals $b 6$ within the Drop, and underneath the fame $1,2,3,4,5,6,7$, are likewife bef formed by a gentle Heat, and
may be difcovered in the Fluid, when their magnified Appearance is no bigger than a Pin's Point, gradually increafing every Moment with regular Sides and Angles, polifhed Surfaces, and the Brightnefs of precious Stones. If too violent an Heat be given, inftead of fuch Cryitals, compound Figures will be formed, very fuddenly, refembling that at c, confifting of parallel frait Lines, pointed with large folid Spear-like Heads of Cryftal, along the Sides of which are placed, at right Angles, great Numbers of fmall Cryftals of the like Shape as the Drawing fhews.-If the Heat has been little, though the fame Kind of Forms will be prefented, they will not appear till the Moifture be nearly dried away, when they will fhoot out with amazing Quicknefs. Some fmaller Compofitions are alfo not unufually feen, as at d.

But the Singularity of this Preparation is, that in fome Part or other of the Drop, you will feldom fail to find a very regular and well-fafhioned two-edged Sword of Cryftal, forming under the Eye, in fuch Shape as e reprefents, though more exact and wellproportioned : for fufpecting fuch a Figure might be fuppofed imaginary, lefs Regularity has been defignedly given it, than it will be really found to have. Sometimes two, three, or more, fuch cryftaline Swords are feen in the fame Drop.

The regular Cryftals of this Subject foon lofe the Sharpnefs and Elegance of their Form; but its compound Configurations, whofe Beauty and Regularity are not to be conceived from Defcription, though when the Fluid is nearly evaporated they feem blunted and indiftinct, yet afterwards, when the Moifture is quite gone, they recover their former Appearance, and may be preferved a long while, by the Method before directed, $p .36$. Salt of Amber, and fome other Salts, lofe and recover themfelves after the fame Manner.

C II A P. XXI.

Florvers of Antimony.

TII E Florvers of Antimony are collected in Form of a white Powder, from the Fumes of burning Antimony, by means of a Glafs Veffel placed over it ; and are fuppofed to contain the moft active Salts and Sulphurs of that Mineral. The greateft Part of thefe Flowers, when they are well firred about in Water, fink to the Bottom thereof, leaving the Salts diffolved and fufpended therein; and on placing a Drop of fuch Water on a Slip of Glafs, and giving it a gentle I-at, Numbers of flender 10

Antimony the Bafis of Noftrums. 123

 and extremely fharp-pointed Spiculce will be feen forming at the Edges of the Drop, as Plate IV. a a a. At the fame time minute Particles of the Powder, that were alfo furpended in the Fluid, will be brought together by a mutual Attraction, and unite a little farther within the Drop, in Configurations refembling a fine Mofs or Coralline, very beautiful and curious to behold : vid. 6 6. -The Middle of the Drop ufually remains clear and void of every thing.Antimony (the Stibium of the Ancients) is found in many Countries: it is compofed of glittering, brittie Strice like Needles, the Colour of polifhed Steel; fometimes running parallel to each other, and fometimes lying in different Directions.-If taken as a Medicine in its native Condition, it is fuppofed very harmlefs, occafioning no fenfibleDiforder in the Body: but, after the Chemift has tried his Art upon it, it becomes. capable of purging or vomiting with great Violence, even in a very fmall Quantity, and therefore fhould be adminiftered with much Caution. Its Operation is however extremely uncertain; the fame Dofe at fome Times feeming to have no Effect at all, which at other Times will operate upwards and downwards in fuch Manner as to threaten the Patient's Life. This makes moft Phyficians afraid to meddle with the more elaborate

Prepa-

T24 Antimony the Bafis of Noftrums.

Preparations of it; though 'tis generally ac. knowledged, that if the Manner of their Operation was certain, or their Violence could be fufficiently reftrained, great Cures might be expected from them. Several Noflrums, exhibited in very fmall Dofes, under different Forms, and cried up as almof univerfal Remedies, are believed, not without Probability, to be Preparations of this Mineral; from the like Uncertainty in their Operation, and the Violence wherewith they fometimes act.

As this Uncertainty is too motorious to be denied, the Difpenfers of thefe Medicines plead, that the Manner of their Operation depends entirely on the Conititution and Diftemper of the Patient, but always tends to produce a Cure: for, fay they, if vomiting be moft neceffary, the Medicine will prove emetic, and that juft fo long and with fuch a Degree of Force as is requifite to bring away the morbid Matter; on the contrary, if purging be more conducive to a Cure, the morbid Matter will be carried downwards; and if the Difeafe requires neither purging nor vomiting, neither will be excited, but the Diforder will be cured by Perfpiration or fome other infenfible Way.-The Truth of this I have nothing at all to do with, but refer the Confideration of it to thofe to whom it more properly belongs: permit

Corrofive Sublinate, and Areeric. 125 mit me only to obferve, that whatever Drug can operate as this does, muft be capable of prodicing great Good or Harm in animal Bodies, according as its Puwers can or cannot be directed or regulated: and confequently, whoever can difcover Means to correct its Violence, and render it a perfectly fafe Medicine, will deferve greatly of Mankind.

I fhall conclude this Head with taking Notice, that the Star-like Shootings on the Regulus of Antimony, about which fome Chemifts make much ado, are nothing more than the natural Configurations of its Salts *。

C H A P. XXII.

Corrofive Sublimate, and Arfenic.

MERCURY, purified Nitre, (or the Spirit of it) calcined Vitriol, and Sea-falt, are the Ingredients from which Corrofive Sublimate, or Mercury Sublimate, is prepared ; which is one of the moft violent

[^19]
126 Configurations of Sublimate.

and deadly Poifons we know, lacerating and excoriating the Vifcera, by its keen and active Spiculæ, till a Gangrune and Death enfue; unlefs proper Remedies are immediately ufed to prevent it.

A Drop of the Solution of this Sublimate in. Water, appears by the Microfcope to begin fhooting from the Edges, as at a, Plate IV. immediately after which, different fhaped Bodies are feen pufhing onward towards the Middle ; fome quite ftrait and extremely fharp like the Points of Needles, others widening themfelves towards their Extremities, and bending in fuch Manner as to refernble Razors with keen Edges: amongtt thefe many are jagged and indented like Saws, fome on one Side only, and fome on both Sides; all which Particulars I hope the Drawing will render intelligible, vid. b b. Thofe that widen towards their Ends, flop their Progrefs, when advanced to the Condition reprefented: but fuch as are ftrait and tapering to a Point proceed very fowly towards the Middle of the Drop, and fometimes much beyond it, forming long Spikes moft exquifitely fharp-pointed, vid. e e.-A few extraordinary Figures appear fometimes, ferrated on both Sides, but in a contrary Direction, and ending with a very flarp Point, as is thewn at c. Others are likewife feen, now and then, having four Sides,
with keen Edges that run tapering to a Point, and form an Inftrument like the long Head of a Spear exceedingly flarppointed, as at d.

When the Water is nearly exhaled, another Sort of Configurations are formed very fuddenly, confifting of innumerable little Lines difpofed in a very curious and wonderful Manner, as the cwo Figures $f f$ endeavour to reprefent. And often (though not always) one or two Configurations fhoot out, when one would think all over, refembling what is fhewn at. g, but much more elegant and regular, and reflecting (I fuppofe from the extreme Thinnefs of the component Salts) with great Brilliance and Luftre all the beautiful Colours of the Rainbow, if the Candle be placed to Advantage. Which Circumftance, together with the Shape of this Configutation, induces me to call it the Peacock's Tail. The Configurations $f f$ reflect Prifm Colours alfo, but in a much lefs Degree of Perfection *.

The Compartment B is intended to hlew, what happens frequently to this and many other Solutions, when a Drop is placed on a Slip of Glafs, for Examination by the Microfcope: that is to fay,

[^20]fome finall Part of the faid Drop becomes fo feparated from the reft, as to make a fort of fmaller Drop, wherein a more minute kind of Configurations are formed, upon the fame Plan as the larger ones in the Drop itfelf. And this the Reader may conceive better, by viewing the Picture before him, thari by any Defcription in my Power to give.

As Corrofive Sublimate and Arfenic are two Poifons nearly alike in their Operation and fatal Confequences, I think it beft to treat of them together in this Chaptèr.

The Fumes that rife from * Cobalt, in making of Smalt from that Mineral, being collected under the Appearance of a whitifh Soot, that Soot, by a farther Procefs, is converted into the common White Arfenic, which is what I now am ipeaking of. It is brought to us in flattifl Pieces of feveral Pounds Weight, and when newly broken appears tranfparent like Glafs or

[^21]

Cryftal, with a brownifh Hue; but, after a few Days, it becomes opake, acquires a milky gloffy Whitenefs, and looks like white Enamel. When reduced to Powder it appears extremely white, and is frequently fold in the Shops by the Name of Rat/bane.

Notwithftanding this Subftance certainly abounds with Salts, as its cryftaline Appearance and its cauftic and corrofive Qualities fufficiently evince, they are fo fheathed or locked up (as the Chemifts exprefs themfelves) in their Sulphurs, that they are very difficult to be feparated and brought to View. Dr. Mead fays, White Arfenic is entirely foluble, if one Part of it be fufficiently boiled in fifteen Parts of diftilled or Rain Water *, which (with what I Ahall mention prefently) gives me Reafon to imagine there may be a Difference in Arfenic, from perhaps a different Way of preparing it; for notwithftanding I have boiled fmall Quantities, for a long while together, in much larger Proportions of Water, to the Confumption of the greateft Part, I always found moft of the Arfenic at the Bottom undiffolved. Nor amongft the Chemifts could I ever obtain any of its Salts, which I was greatly defirous to examine by the Microfcope \dagger.

Some-

[^22]Sometimes, indeed, in a Drop of the Water wherein Arfenic has been boiled, I have difcovered a very few fingle Octaëdra, confifting of eight triangular Planes, or two Pyramids joined Bafe to Bafe; which undoubtedly is the true Figure of its Cryftals, as I have fince been fully convinced by the Afriftance of an ingenious Friend, who found Means to diffolye an Ounce of the white cryfalline Arfenic in about three Pints of Water, of which, after evaporating a confiderable Part, he brought a Phial-full to me. It was then a-very clear and ponderous Liquor, without any Appearance of Cryftals: but in a few Days, found the Sides of the Phial, even as high as the Surface of the Liquor ${ }_{y}$. pretty thickly covered with very minute Cryftals, adhering firmly to the Glafs, fo as not eafily to be removed, but diftingt and feparate from one another. On examining them with Glafies, I found thern to be Oetaëdra, uncommonly hard and infoluble. After near fix Months I don't perceive their Size to be at all enlarged, or theis Number to be increafed. A Drop of the
a Chemint had prefented to him as the true Salt of Arfenic, and I had great Hopes by this to have gratified my Curiofity: but when I came to try it, 1 found it abfolutely issoluble even in boiling Water, after its being reduced to Powder; and from its Appearance, its Hardnels, and other Circumftances, I am very furpicious it was no other than common Spar.

Solution

Mijchiefs by Arjenic, bowe cured. ist

Solution, examined on a Slip of Glafs? either heated over a Candle, or left to evaporate of itfelf, notwithftanding its being fated with the Particles of Arfenic, produces no Configurations, and hardly any Cryftals, leaving only a white Powder behind it upon the Glafs: whofe Particles, whilft the Water gradually evaporates, appear like minute Globules, even fmaller than thofe of the Blood.

This White Arfenic is much more dangerous than the yellow or red, being a deadly Poifon to all living Creatures : the Symptoms it brings on are much the fame as thofe of Corrogive Sublimate, viz. Sicknefs, Fainting, Convulfions, cold-Sweats, intolerable Heat and Thirft, Erofion of the Stomach and Inteftines, Inflammation, Gangrene, and Death. But its Action is flower than that of Sublimate, for its Salts are fo fheathed by its Sulphurs, that they begin not to operate, till thofe Sulphurs become rarified by the Heat of the Body, and fet the Salts at Liberty; infomuch that a Pa tient may be faved after it hàs been fwallowed half an Hour, by drinking large Quantities of Olive-Oil, or melted frefh Butter, or Lard, if Oil be not.at Hand, till by Difcharges upwards and downwards, an Abatement of the Symptoms fiews the Poifon to be carried off. Salt of Tartar diffolved in Broth or Water, is alfo greatly comK 2
mended
mended in this dangerous Cafe, along with the foregoing Remedies, as a Corrector of this Poifon, and fo likewife is Milk. The fame Method is advifeable where Sublimate has been fwallowed, but then it muft be employed very fpeedily, or no Relief can be expected. After either of thefe Poifons has been difcharged, drinking Milk for a few Days, and a gentle Purge or two, are very proper to complete the Cure *.

The

* Dr. Blair, in his Letter to Dr. Mad, on the Effects
of Aremic upon human Bodies, gives two remarkable of Arfinic upon human Bodies, gives two remarkable Cafes; the one of a Woman, who was killed by this Poifon mived with Flummery; which the eating about eleven o'Clock at Night, was feized immediately with violent Purgings and Vomitings, that continued till four o'Clock in the Morning, when the died convulfive. The Poifon had been fo well wrapt up in the Flummery, that on her being opened the Oefophagus was no ways altered: but the Doctor was furprized to find the Stomach fo full of Liquor, having been informed the had eat or drank very little the Day before the Poifon was given. It contained a greenifh Subflance, without any Colour or Appearance of fuch a digefted Mafs as ufes to be in the Stomach, with §everal thick Coagula about the Bignefs of Walnuts, fufpending fome fmall Quantities of a whitifh grofs Powder. When this Liquor was emptied, he found reddifh and blackifh Strixe all over the Pilorus, being fo many irflamed Lines refembling the Branchings of Blood-veffels, upon which the grols, whitifh; hard Fowder lay in fuch Quantity, that after being well dried it weighed between a Scruple and half a Dram. All along the Inteftines, as he laid them open down to the Anus, he found fo much of the fame Kind of Liquor, without either Colour, Confiftence, or Smell of an Ex= crement, as filled a Quart Bottle: which reemed extra. ordinary, confidering the great Evacuations before her Death. He infers, that the Glands throughout the whole

The Fumes or Steams of Arfenic are ex-

 ceedingly pernicious, and commonly diftinguifh themfelves by an abominable finking Smell like Garlic ; tho' Otto Tacbenius fays, in his Hippocrates Cbemicus, that after many Sublimations of Arfenic, on opening the Vefiel, he fucked in fo grateful and fweet a Vapour that he greatly admired it, having never experienced the like before: but in about half an Hour, his Stomach began to ake and became contraceed, a Convulion of all his Limbs fucceeded, he made bloody Urine with incredible Heat,' was feized withPrime Vie muft have been moft violently compreffed, to. fqueeze fuch Quantities of Liquor into the Stomach and Inteftines.

The other Cafe is of a Lady, who on tafting (by Miftake) only fo fmall a Quantity of White Arfenic as adhered to the Tip of her Finger, found herfelf within two Hours in great Diforder, grew faint, fell in a Swoon, and loft her Senfes before the could be laid in Bed. A Phyfician being called, prefcribed an Emetic, which made her vomit a large Quantity of fuch Sort of greenifh Liquor as in the former Cafe; after which the voided by Stool feveral Globules of greenifh Coagulums of the Bignefs, Colour, and nearly the Confiftence of pickled Olives. Thefe Difcharges being over, and Alexipharmics given, the fweated plentifully, and nept well, and when fhe awaked her Skin was fpeckled with livid and purplifh Spots. She recovered in a few Days, and became perfectly well. The Doctor obferves, that thefe greenifh Coagula are what Arfenic ufually produces, when internally given; the Knowledge of which may be of Ufe to thofe who may have Occation to open Bodies on Sufpicion of their having been poifoned thercby. Sec ©lair's Mifc. Obfervations, pag. 62.

134 Steams of Arenic boro mijcbievous.
Cholic Pains, and cramped all over for an Hour or two; when thefe ugly Symptoms were taken away by his drinking Milk and Oil, and he became indifferently well; they were followed however by a flow Fever like an Hectic, which fluck by him the whole Winter, and of which he recovered very flowly by a proper Regimen in Diet *.

The extreme Subtilty and Penetrability of thefe Steams are remarkably manifett by their furprizing Effeet in the Experiment

[^23]of the Ink cailed Sympathetic *. A Grain of Arfenic will alfo convert a Pound of COP-

* As forme of my Readers may poflibly not know the Experiment here referred to, I Mall give it by Way of Nure, which thofe acquainted with it may if they pleafe pals over.
Orpiment half an Ounce, and one Ounce of Quicklime, being powdered feparately, then mixed together, and put into a Matraf; with five or fix Ounces of Water, fop the. Veffel clofe, and digest in a gentle Sand Heat for ten or twelve Hours, fhaking the Mixture often. The Liquor, when fetted, will be very clear.

This being prepared, write, with a Arong Solution of Saccharum Saturni made in common Water, on a Piece of clean Paper, and when it is dry nothing will be feen at all. Put the Paper with this invifible Writing betweon the very beginning Leaves of a Book; then with a Bruth or Piece of Spunge, dipt in the Liquor prepared with Orpiment, wet another Paper, and place it at the End of the fame Book, oppofite to the firf Paper. Shut the Book nimbly, and with your Hand flrike on it two or three fmart Blows; and if it be very thick fqueeze it in a Prefs, or fit upon it a few Minutes: after which, on opening the Book, you'll find the invifible Writing black and legible, by the fubtile Penetration of the Steams of the Orpiment through all the Leaves.
Quench burning Cork in Spirit of Wine, and when 'tis finely powdered make Ink, by mixing a fufficient Quan tity of it in Water a little thickened with Gum. Write on a Paper with the Solution of Saccharum Saturni, and when otis dry and invifible, write again upon the fame Place with your Cork and Water, which will appear like common Ink; when 'tis dry rub it over with fome Cotton wetted in the Preparation of Orpiment, and immediately the Writing that was vifible will difappear, and the invifible Writing will prefent itfelf very legible inftead thereof. Thefe are pretty Experiments, which I feveral times have tried; but they fhould be made in the open Air. and with great Caution, the Fumes of the Orpiment ftinking moft abominably, and being productive of great Mifn chiefs if taken into the Lungs.

per into a beautiful Refemblance of Silver, but renders it brittle at the fame Time,

 Otto.ARSENIC being the Poifon moft commonly made Ure of by wicked People to deftroy others, and by defpairing Wretches to put an End to their own Lives, I thall I hope be excufed, for adding this Note of Infruction how to make - rial of any Subfance furpected of being Arfenic: and likewife how to judge of the Symptoms it produces when taken; collecled from the recent unhappy Cafe of Mr. Blandy.

This Gentleman was poifoned by Arfenic, given nim by his own Daughter in Water Gruel; at the Bottom of a Pan of which a Servant Maid finding an unufual white gritty Subftance, and fufpecting Mifchief, from having feen her Miftrefs flirring fomeching into it, fhe fhewed it to an Apothecary, who faved a little Quantity of the Sediment, which was dried, and examined by Dr. Addingtor.

The Doctor's Account of White Arfenic upon the Trial of Mifs Blandy, was, that when powdered it has a milky Whitenefs, is gritty and almoft infipid. Part fwims on the Surface of cold Water like a pale fulphureous Film, but the greatelt Part finks to the Bottom, and remains there undiffolved. Thrown on red-hot Iron, it does not flame, but rifes intirely in thick white Fumes, which have the Stench of Garlic, and cover cold Iron held over them with white Flowers. The Powder he examined did exactly the fame.

He boiled ten Grains of powdered Arfenic in four Ounces ${ }^{\circ}$ of clean Water, which he filtered, divided into five equal Parts, and put into as many Glafes.-On pouring into the firt Glafs il few Drops of Spirit of Sal Ammoniac, it threw down a few Particles of a pale Sediment. Some Lixivium of Tartar poured into the fecond, produced a white Cloud, hanging a little above, the Middle of the Glafs. Strong Spirit of Vitriol poured into the third, made a confiderable Precipitation of a lightioh coloured Subftance, which hardened into glittering Cryflals, ficking to the Sides and Bottom of the Glafs. Sipirit of Salt poured into the fourth, precipitated a lightifh coloured Subftance. Syrup of Violets in the fifth, produced a beautiful pale green Colour.Ten Grains of the Sediment from the Cruel, tried in the fame Mannér, afforded the fame Appearances exactly.

The Symptoms produced by this Poifon in Mr. Blandsy wcre burning and pricking in the Tongue, Throat, Stomach, and Gowels, Sicknefs, Gripings, Vomiting and Purging,

Its Symptoms and fatial Effects. I 37

Otto Tacbenius fays, that Silver may be obtained from Tin by Arfenic.
bloody Stools; Excoriation of the Fundament, Swelling of the Belly, exquifite Pains and Prickings in every external as well as internal Part of the Body, which he compared to an infinite Number of Needles darting into him all at once. Uncafinefs in the Mouth, Lips, Nofe, and Eyes; Lips dry and rough with angry Piniples on them, infide of the Noftrils in the fame Condition, the Eyes a little Bloodfhot; cold Sweats, Hiccup, extreme Refleffinefs and Anxiety, low, trembling, intermitting Pulfe, difficult unéqual Refpiration; Difficulty of Speech, Inability of Swallowing, and (the Con, fequence of all thefe cruel Symptoms) Death.

Dr. Addington and Dr. Lerwis, on examining the dead Body; found it in the following Condition, viz. The Back, hinder Part of the Arms, Legs, and Thighs, were livid. The Fat on the Mufcles of the Belly of a loofe Texture, inclining to 2 State of Fluidity; the Mufcles themfelves pale and flacsid. The Cawl yellower than natural, and on the Side next the Stomach and Inteftines, brownifh. The Heart variegated ivith purple Spots; and no Water in the Pericardium. The Lungs like Bladders filled with Air, and blotted as it were in fome Places with pale, but in mort with black Ink. The Liver and Spleen much difcoloured : the Liver looked as if boiled, but that Part which covered the Stomach particularly black. The Bile fuid, of a dirty yellow inclining to red. The Kidneys fained all over with livid Spots. The Stomach and Bowels inflated, and appearing? before any Incifion, as if pinched and extravafated Blood had been Itagnated between their Membranes. They contained nothing, as far as they were examined, but a llimy bloody Froth : their Coats remarkably fmooth, thin, and flabby. The Wrinkles of the Stomach totally obliterated: its internal Coat and the Duodenum prodigioufly inflamed and excoriated.——Vid. Mijs Blandy's Trial, Folio, pages

$12,13,14,15$.

As Arfenic is not ufed in Medicine, it would be well if the Apothecaries and Chemifts did not keep it in their Shops: Selling now and then a Pennyworth to kill Rats (and even in doing that many fad Accidents have happened) can furely induce no good Man to rifk the Poffibility of putting this horrid Poifon into wicked Harids.

$$
8-\text { C HAP }
$$

[13^{8}]

C H A P. XXHI.

SAlt of Amber.

TH E pretty Shootings of this extraordinary Salt are exceedingly entertaining, though its Progreflions are fo very flow, that forme Patience is neceffary to wait for and attend to the whole Courfe of its Configurations: but a curious Obferver will find from it at laft a Pleafure fufficient to reward his Attention.-Its firf Shootings at the Edge of the Drop, after it has been held for a few Seconds over the Flame of a Lamp or Candle, appear irregular, as at a a, Plate V. Some Figures pufh out foon after, beyond the reft, and are curved and tapering to a Point, as 66 . Very elegant Figures will be feen forming themfelves in other Places at the fame Time, and refembling Sprigs of Fir or Yew : Numbers of thefe rife together, each having a main Stem very thickly befet with little Shootings from Top to Bottom, in fome on both Sides, but in others on one Side only ; which Difference will be underftood by a View of the Figures cc. The downy Feathers of Birds appear in the fame Kind of Form when examined by the Microfcope. As the Progreffion goes on, Branches will be found iffuing from the Sides of the former Shootings, vid. $d:$ and in fome Places of the Drop feveral Gradations
xions of Branchings will be perceived to fucceed one another, to divide and fubdivide after a moft wonderful Order, reprefenting at the laft a Winter Scene of Trees without Leaves, a Specimen of which is Shewn at e. -The laft Action of this curious Salt produces Figures exquifitely delicate, bearing no Refemblance to any Thing that preceded, but appearing like the Flourithes or Engravings of a mafterly Hand, in the Manner reprefented at $f f$. This Part of the Operation begins not till the Water is nearly exhaled, and whilft it is performing the Scene appears a good deal confufed; but after waiting till the Water is intirely dried away, a thoufand Beauties will prefent themfelves perfectly diftinct and clear ; for the Configurations of this Salt do not break away, or melt in the Air, as moft others do, but may be preferved on the Glafs Slip for a long While afterwards, if fo be nothing is fuffered to rub them off.

It would give me great Pleafure, was it poffible, from the Configurations of this Salt, to trace out, with any Degree of Certainty, the Generation or Production of Amber; a Subject about which Naturalifts are exceedingly divided and perplexed: Some fuppofing it an animal Subftance, others a refinous vegetable concreted Juice, and others a natural Foffil or Mineral : but the Shootings of its Salt are fo very different from every other Kind, that

140 Amber, uncertain bow produced.
they afford little or no Ground on which ta raife a Conjecture: however, the general Figures round the Edge have I think a Sort of mineral Character, and the Feather-like Bodies tend a little towards the Shootings of fome of the Vitriols. The curved fingle Lines $f f$, which appear like Drawings with a Pen, are fo peculiar to this Salt, that, for Want of finding them elfewhere, one can form no Judgment from whence they derive their Form ; and the Cafe is the fame as to thofe Shootings which refemble naked Trees. I fhall not pretend therefore to inferany Thing from thefe Figures: but, before I intirely quit the Subject, fhall prefent a few शueries to the Confideration of my curious Readers.

2uere I. Does not Amber, when analyzed, afford a confiderable Quantity of Oil, in Smell, Colour, Inflammability, and Confiftence like the White, or rather Amber-coloured Naptba, a Proportion of Acid Salt, and a Caput Mortuum or earthy Subftance? and if fo, does it not feem probable, that fuch a bituminous Oil fixt by an acid Salt, with more or lefs of an earthy Subftance, is really the Compofition of Amber *?

[^24]2uere 2. If it be inquired, where there Materials are to be found, and how they can be brought together? may it not be anfwered, that in fome Countries, and particularly in Perfia, near the Ca/pian Sea, there are Springs where Naptba rifes out of the Bowels of the Earth; and that the Ground thereabouts is fo faturated therewith, that, on fcraping off the Surface, and applying a Candle near it, a Fume arifing therefrom immediately takes Fire, and continues burning, with a clear and conftant Flame, until it becomes extinguifhed by throwing Earth upon it, or fmothering it by fome other Means *? If therefore, fuch bituminous

- Two Letters now lie before me, with Accounts of there Napiba Springs; one from Dr. Games Mounfey, Phyfician to the Army of the Czarina, the other from fonas Hanway, Efq: both Gentlemen, who by their Travels, their Refidence in Mufory, and their Acquaintance with fcveral People who have been upon the Spot, have had great Opportunities of becoming perfeetly informed of every Thing relating to this subject ; and whofe Judgment and Veracity may be depended on. Both their Accounts agree, that ou the Weftern Coaft of the Cafpian Sea, not far from the City of Baku, there is a large Spot of Ground, where, on taking off 2 or 3 Inches of the Surface of the Earth, and then applying a; live Coal, the Place uncovered catches Fire, even before the Coal touches the Ground, and fends forth a light blue Elame, which goes not out unlefs it be fmothered by throwing Earth, or fomething elfe, upon it. This Flame makes the Earth hot, but does not confume it. If a Tube (even of Paper) or a Reed be fet about two Inches in the Ground, and made clofe below with Earth, on touching the Top of it with a live Coal, and blowing, a Flame immediately iffues forth, without burning cither the Reed or Paper, provided the Edges be

Oil be found, and in fufficient Quantity, our next Enquiry will be concerning the Acid Salt : as to which, are not the Chemifts pretty generally agreed, in fuppofing, that what they call a Vagke Acid (whereby they mean,
covered with Clay. This Method fupplies the want of Candles in their Houfes. Three or four of thefe Canes will alfo boil Water in a Pot, and they drefs their Vietuals with it. The Flame may be blowed out like that of a Lamp, but otherwife it continues burning; it fmells fomewhat fulphureous, or rather like Napiba, but very little offenfive. The Ground is dry and flony, and the more fony the Ground the flronger and clearer the Flame. Near this Place they dig Brimftone, and here are alfo Naptba Springs. But the chief Place for Naptha is Swieten Ifland, a fmall Trât of Land on the Weftern Coalt of the Cajpian Sea, and uninhabited, except at fuch Seafons as they fetch Naptba from thence: which the Perfians load in their wretched Embarkations without Barrels or any other Veffels, fo that fometimes you fee the Sea covered with it for Leagues together. The Springs boil up highelt in thick and heavy Weather, and the Napitba fometimes takes Fire on the Surface, and runs lighted or burning into the Sea in great Quantities, and to great Dif: tances. In clear Weather it does not bubble up above two or three Feet. People make Cifterns ncar the Springs, into which shey convey what overflows by Troughs, taking off the Naptha from the Surface, under which there is a Mixture of Water or fome heavier Fluid. The greateft Part is of a dark grey Colour, very unpleafant to the Smell, but ufed in Lamps by the poorer Sort. There are alfo Springs of black Naptha, which is thick, and on Diftillation grows not clear but yellow; but the molt valuable is the white Naptba, which is naturally clear and yellowifh, and bears a great Price. The Kuffans drink it as a Cordial, but it does not intoxicate: it is ufed alfo for Pains or Aches, and is carried into India as a great Rarity, where they make with it the molt beautiful and lafting Japan that has ever yet been known.

What the Indians call the Everlafing Fire, lies about ten Englifh Miles, N. E. by E. from the City of Baku, on dry socky Ground. There are feveral ancient Temples, built with Stone, fuppofed to have been all dedicated to Fire; moft of them
if I underfand them aright, a volatile fubtile Vapour, Fume, or Spirit) exifts in the Bowels of the Earth, and throughout the Atmofphere near the Surface thereof; and that by pervading, intermixing, or concreting with different Subftances, it compofes
are low arched Vaults, from 10 to 15 Feet high. Among the reft there is a Temple in which the Indians now workhip; near the Altar, about three Feet high, there is a large hollow Cane, from the End of which illues a Flame, in Colour and Gentlenefs not unlike a Lamp that burns with Spirits. The Indians affirm, this Flame has continued burning fome thoufands of Years, and believe it will laft to the End of the World, and that if it was refifted or fuppreffed in this Place, it would rife in fome other. By the Number of Temples it is probable here were formerly a great Number of Worfhip-, pers of Fire, aswell Indians as Perfisns: they are called Gouers. At prefent here are only about twenty Perfons, who refide conftantly and go almoft naked. In Summer it is very hot, and in Winter they dwell within Doors, and can keep what Fire they pleafe in the Manner above defcribed : they live upon Roots and Herbs for the moft Part, and are fuppofed to attend as Mediators for the Sins of many who are abrent : and by their Application to this Fire, in which the Deity is fuppofed to be prefent and vifible, they atone for the Sins of others. A little Way from the Temple jult now mentioned, near Baku, is a low Cliff of a Rock, in whick there is an horizontal Gap 2 Feet from the Ground, betiveen 5 and 6 long, and about 3 Feet broad, out of which iffues a conftant Flame, much of the Colour mentioned already, being a light blue. It rifes fometimes 8 Feet high, but is more low in fill Weather. They don't perceive the Rock waftes in the leaft. This alfo the Indians wormip, and fay it cannot be put out. About 20 Yards on the Back of this Cliff is a Well, ir a Rosk 12 or 14 Fathoms deep, with exceeding good Water.
The curious Particulars contained in this Digreffion will, 'tis hoped, excufe its being infersed.

I received with thefe Letters fome of the white Naptba, which in Colour, Smell, and Talf, refembles much the finelt Kind of Oil of Amber.

144 Queries concerning Amber.
Vitriol, Alum, Nitre, and feveral metallic and mineral Bodies? May it not then be imagined poffible for this fame acid Vapour fo to mix with and confolidate fuch bituminous foffil Oil, or Naptha, as thereby to produce Amber?

2uere 3. Is there any thing in the Appearance of Amber, or in the Places where it is found, that may conduce towards forming fome probable Conjecture concerning the Production of this Body *?

2uere 4. Do not the feverai Species of Infects found in Amber, prove, beyond atl Difpute, that it muft have beer in a fluid State at the Time thofe Infects were intangled in it? Are not the Springs or Ooz-

- We are told, that where Amber is met with in Quantity, there is likewife conftantly an Abundance of Vitriol. No Country yet known affords more or hetter Amber than Pruffia, where it lies, as Hartman fays, in a Kind of Strazum or Bed, intermixt with a Subftance refembling foffl Wood or Bark, but whofe Origination he imputes to a \}at bituminous Earth: Vitriol and Bitumen are alfo here in Plenty, and he was informed there are Springs of Oil rifing out of the Ground; from all which Circumftances put together, his Conclufion is, that the Exhalations of Bitumen (from a fubterraneous Heat) are collected into Drops; that the fame Heat pervading the neighbouring Salts, carjies their EfHuvia along with it, ard mixes them with the bituminots Drops; whence he fuppofes, that the faline Spicule fix the Bitumen and produce Amber, which is more tranfparent, bcttcr fcented, and firmer, according to the Purity and Proportion of the bituminous and faline Exhalations. Vid. Pbil. Tranf. No 248. May nut fome of the foffil Oil here mentioned be as eafily fuppofed to have been fixt by the faline litituvia or Spicula?

$$
\text { Queries concerning Amber. } 145
$$

ings of Naptha out of the Earth in Places where Infects might be likely to fall into it ? Suppofing which, might it not perhaps have been hardened or congealed by the acid Vapour foon after their being fo intangled? though that is not abfolutely neceffary, fince Naptha will preferve Animal Bodies a great Length of Time. Is it not found on Trial, that the Wings, Horns, Legs, $E^{2} c$. of very fmall Creatures fpread and extend themfelves much better in Naptha, or fine Oil, than in Water or any watery Fluid? and may not this account, in fome Meafure, for the Perfection in which fome very fmall Infects appear, when embodied in this Subftance?

2uere 5. As the Earth affords bituminous Fluids different in Colour, Confiftence, and Purity, may not white Naptha (fo called, tho' of a pale yellow) which is the moft pure of all, be fuppofed capable of being concreted into the beft and cleareft Amber? may not a coarfer and browner Naptha compofe Amber more indifferent? and may not a black Kind be converted by the fame Chemiftry of Nature into Jet and Afphaltum?

Quere 6. Is it wholly improbable that fome bituminous Juice, or foffil Pitch, mixed and concreted with Earth, or perhaps fome other Matter, may be the Compofition of Coal? and fhould it be inquired Vol. II. L. where

146 Querics concerning Amber.
where an acid Spirit can be found for the fixing and confolidating thefe Principles ? do not the Cboak Damps in moft Coal Pits prove the Exiftence of fuch a Spirit within the Bowels of the Earth? do not the Fire Damps, frequent in the fame Pits, likewife prove the Abundance of a bituminous Vapour inflammable like Naptha?

Quere. 7. Do not the Brittlenefs and Lightnefs of Coal, Jet, and Amber, fomewhat countenance the Opinion of their being of an oily and bituminous Compofition? and if fo, what Fluids does the Earth afford fo likely to conftitute thefe Subftances as * Foffil Pitch, Petroleum, Oleum Terra, and the different Sorts of Naptba?

* Captain Joinn Porntz, in his Account of the Mand of T'obago, p. ${ }^{2}$, fays, "Green Tar iffues out of the Earth from os the Munjack Rocks, and is commonly gathered after a "Shower of Rain, by Ikimming it off from the Surface of "Water: then putting it into a great Gourd, or fuch " like Veffel, that has an Hole at the Botton, they feparate " the Oil from the Water, by fuffering the Water to flide " gently out, but when the Oil appears, they caurioufly fop " and preferve it for feveral Ufes, as to burn in Lamps, \mathcal{O}_{c}. "The MTurjack is nothing elfe than a Confirmation or Coa"gulation of the Tar (we fpoke of) into a more folid "Pody' ; which Murjack were it in a frigid, as it is in "t the torrid Zone, would be abfolute Coal, fuch as we "burn in Euglana'."

[147]

C H A P. XXIV.

Of Scarborough Salt.

wHAT I am now about to treat of under the Name of Scarborough Salt, was bought at one of the principal Water Warehoufes in London, at a good Price ; and was affirmed by the Seller to be a true and genuine Salt prepared from the Scarborougb Well.

Some of this being diffolved in Water, a Drop of the Solution begins fhooting from the Edges : firft of all, in Portions of quadrilateral Figures, much like thofe of common Salt ; but their Angles inftead of 90 are of about ioo Degrees. Thefe Figures fhoot in great Numbers round the Borders of the Drop, having their Sides as nearly parallel to one another as the Figure of the Drop will allow : fome proceed but a little Way, others farther, before they renew the Shoot, vid. a a, Plate V. In fome Places they appear more pointed and longer, as at b, and fometimes inftead of the diagonal, one of the Sides is feen towards the Edge, and the other thooting into the Middle, as e.

The inward Confgigurations feem to owe their Forms moftly to Vitriol, and are all produced by the fame Method of Shooting: though fome proceed from the Figures ai-

$$
\text { L } 2 \text { ready }
$$

148 Of Scarborough Salt.
ready formed at the Edges, and others from original Points rifing in the Fluid, and intirely detached from the Sides of the Drop. The former are produced by the fudden Elongation of fuch Figures as b, or c, into one long Spike or Stem, which in its Progrefs fends forth Spicula from its Sides, ranged clofe to one another, fometimes nearly at right Angles to the main Stem, as at e, and at other times obliquely thereto, thofe on the one Side thooting upwards, and thofe on the other downwards, in regard to the Foot of the Stem, as at d : the whole Number of the Spicula on each Side of the Stem forming a right-angled, or an oblique-angled Triangle. From the loweft of thefe Spiculce are frequently feen others of the fame Kind proceeding, but their Direction, in refpect to the Branch they rife from, feems not wholly correfpondent to the Direction of the faid Branch in refpect to its main Stem, being fometimes alike and fometimes unlike thereto, vid. $d e$.

The other Figure which the Middle produces is of a like Kind with thofe laft defcribed, but floots from a fingle detached Point (for the mont Part) into four Branches, which are generally tho' not always oblique to one another, as at f.

C H A P.

[149]

C H A P. XXV.

Cheltenham Salt.

wHEN this Salt is prepared for Examination by Solution, its firft Shootings at the Edge of the Drop are Radiations, (from a Number of very fmall Centers,) which fpread till they meet each other. whereby their Progrefs is for a while impeded; but other Shootings foon begin from the Extremities of thefe, and proceed by fmall Steps and Renovations reprefented at a, Plate V. There Figures, however, frequently diffolve again and difappear, and in their Places larger ones of the fame Kind arife, as from their Ruins, fomewhat in the Form of Bruhes, fee 6 . Small Ramifications like the Branches of fome of the Species of Mofs fhoot frequently from the Tops of the $f e$, as c attempts to fhew.--But all the above-mentioned Figures, which a finall Degree of Heat produces, feldom occupy more than one Side of the Drop: the more folid Configurations which generally take up the other Side, not forming till near the End of the Operation. In the mean Time great Part of the Middle of the Drop becomes filled with many fmall Figures, which appearing firt as Points, rifing under the Eye imperceptibly, fhoot every Way afterL 3 wards
wards into very pellucid and beautiful Ra mifications, as $d d$. Some Figures owing their Form to common Salt, like that fhewn at e, are ufually the Fore-runners of another Kind of Configuration arifing from the fame Principle, which fhoots pretty fuddenly, and appears not much unlike the Covert Way and the Glacis or outward Slope of a fortified Place, vid. f.f.

This Salt was bought at the fame Place as the foregoing, and with the fame Affurance of its being genuine. When kept a little while it crumbled into a white Calx or Powder, though it was at firft in very fair Cryftals.

C H A P. XXVI.

Epsom Salt.

ADrop of the Solution of this Salt begins to thoot from the Edge in jagged Figures like thofe fhewn at a, Plate V. From other Parts of the Edge different Configurations extend themfelves towards the Middle, fome whercof have fine Lines proceeding from both Sides of a main Stem, in an oblique Direction, thofe on one Side fhooting upwards in an Angle of about 60 Degrees, and thofe on the other downwards in the fame Obliquity, as at c and f. Others produce Jaggs from
from their Sides nearly perpendicular to the main Stem, thereby forming Figures that refemble the Branches of fome Species of Polipody: thefe are reprefented at e : but in others the Jaggs are fhorter, vid. d. Now and then one of the main Stems continues fhooting to a confiderable Length, without any Branchings from the Sides, but at laft fends out two Branches from its Extremity, as at g. Sometimes a Figure is produced having many fine and minute Lines radiating from a Center, in the Manner fhewn at b. The laft Shootings in the Middle of the Drop may be feen at b, and are not unlike the Frame Work for the flooring or roofing of an Houfe, but with the Angles a little oblique : and fometimes a Form prefents itfelf like that fhewn at i.

All thefe Figures muft be produced with a very fmall Degree of Heat, for if the Drop be made too hot the Salt will not fhoot at all: but when once the Configurations are formed, the Salts fix, become fmooth and hard like Glafs, and may be preferved a long Time.

The Subject above defcribed was not the true Salt of the Epfom Waters, which I knew not where to get; but it was I believe fome fort of Preparation like what is commonly fold under the Name of Epfom Salt, at a very cheap Rate: though I gave a much

$$
\mathrm{L}_{4} \quad \text { larger }
$$

larger Price for this, on its being recommended as a much better purging Salt *. Acton Salt, or what I bought for fuch, appeared on Examination juft like the above, but without the Figures big.

C H A P. XXVII.

Sal Polychrestum.

ASolution of this Salt when heated begins to fhoot near the Edges of the $\overline{\text { Drop, in Ramifications, as at } a, \text { Plate } \mathrm{V} \text {. or }}$

- Dr. Quincy, in his Englifh Difpenfatory, remarks what was then fold for the Salt of Epfom Water, as an abominable Cheat. (vid. Edit. Sth. page 355.) He informs us, " that Dr. Grewe, having found by Experiment, that a * Gallon of Water would, on Evaporation, afford about "two Drams of Salt, endued with the cathartic Quality of "t the Water, gave an Account thereof in Latin to the Royal "Society. Upon which a certain Chemift pretending to make " large Quantities for Sale, put off a fictitious Preparation "for the true Salt of Epfom Purging W'aters; and others " attempting the fame Thing, the Price was foon brought "fo low, that inftead of one Shilling per Ounce, under " which the true S alt could not honeflly be inade, their ficti"tious Kind was fold at not much above 30 Shillings "per Hundred Weight, which little exceeds three Pence "per Pound." And D.. Brozunrigg affures us, in his excellent Treatife on the Art of making common Salt, page 88, that all the Salt now vended under the Name of $E p$ fom Salt, is prepared intirely from the marine Bittern, at the Salt Works nigh Newucafle, and at thore at Lymington and other Parts of Hampbire; which Bittern is a faline Liquor, of a Gharp and bitter Tafte, left at the Bottom of the Salt Pans after the Salt is made and taken out. $\mathrm{F}_{\mathrm{I}} \mathrm{d}$. page 62.

Glauber's Salt.

in the Figures fhewn at b : but if only a fmall Degree of Heat be employed, it forms many very tranfparent Parallelograms, fome having one, and fome more of their Angles fecanted, as at c.

This Salt is a Mixture of Nitre and Sulphur in equal Quantities, fet on fire in a Crucible by a Spoonful at a Time, afterwards diffolved in warm Water, filtered and evaporated. It purges by Stool and Urine.

C H A P. XXVIII.

> Glauber's Salt.

AFTER the Diftillation of Spirit of Salt with Oil of Vitriol, (from Oil of Vitriol, common Salt and Spring Water in equal Quantities ;) what Salt remains at the Bottom of the Retort, being diffolved, filtered, evaporated, and cryftalized, is called Glauber's wonderful Salt.

A Drop of Water faturated with this Salt, and gently heated over a Candle, produces Ramifications from the Side of the Drop, like the Growth of minute Plants, but extremely tranfparent and elegant, in the Manner fhewn at c, Plate V. Some of them however begin to fhoot from a Center at fome Diftance from the Edge, protrude Branches
from that Center in a contrary Direction, and appear fomewhat like a Bundle of Grafs or Twigs tied together in the Middle, as at b : they likewife fhoot fometimes from one and fometimes from more Sides of the central Point, in the Varieties fhewn at d.

Other Figures are produced from different Parts of the Edge of the Drop, as at a and f, as alfo the parallel. Shootings at e : but the moft remarkable and beautiful Configuration forms itfelf laft of all near the Middle of the Drop: it is compofed of a Number of Lines, proceeding from one another at right Angles, with tranfparent Spaces and Divifions running between them, appearing altogether like Streets, Alleys, and Squares, as reprefented at $g g$. This Figure plainly owes its Original to Marine Salt, and is of the fame Kind with that nhewn at $f f$, in the Cbelterniom Salt. The Figures a and e are vitriolic.

When this Configuration begins, it forms with wonderful Rapidity, affording the Obferver a very agreeable Entertainment : but he muft watch it carefully, for as it is produced almoft inftantancoufly, its Beauty is of a very fhort Duration: in a few Moments it difolves and breaks away like melted Ice, which renders the Drawing of it very difficult. The Figure in the Plate was taken at feveral Times and with different Drops,

Salt of Tartar.
in order to collect together and reprefent the general Idea of it.

If the Solution be not heated in the Botthe, to diffolve the Sediment it throws down, little will appear but the Brufh-like Figures. Glauber's Salt is reckoned to anfwer the Intention of mort purging Waters: it promotes Evacuation both by Stool and Urine, and may be fo made as to be lefs naufeous than moft other artificial purging Salts.

C H A P. XXIX. Salt of Tartar.

AFTER heating a Drop of the Solution of this Salt, there arife in many Places, near its Edges, Numbers of minute Bodies, pretty irregular in their Form, but moftly inclining to be triangular; as may be feen in the Drawing, at the Side b. (See Plate VI.) Several of theie appear likewife farther within the Drop, and produce all the Variety of Figures $c c, d d, \& c$. - There fhoot at the fame Time, from fome Parts of the Edge, tranfparent Bodies with parallel Sides terminating as at a, fome whereof are ftrewed over with the little Triangles before defcribed. From other Parts of the Edges branched Figures prefent themfelves, refembling fmall Shrubs, (vid. f.) whofe Twigs are naked foon after covered with little Leaves or Tufts; the minute Bodies above mentioned which rife near the Twigs being attracted by and adhering to them.

But the moft odd and fingular Circumftance in the Shooting of this Salt is, that ftrait Lines appear, two and two, inclining toward each other from the Edge of the Drop where they begin to fhoot, but never meeting fo as to form a Point, thuugh fometimes they extend almof acrofs the Drop, vid. e. - They may poffibly be cylindric Tubes, but of that I arn not certain.

The Humidity of the Air foon puts an End to all there Configurations.

Crude Tartar, calcined, diffolved in warm Water, purified by Filtration, and evaporated to a Drynefs, becomes what is ufually called Salt of Tartar: which Salt tied up in a Cloth, and hanged in a damp Place, attracts the Moifture of the Air, and liquifies in fuch Manner, that from one Pound thereof there will drop down double its Weight of what is termed Oil of Tartar per deliguiun: but inftead of this the Shops frequently fell * Pearl Afhes liquified by the Air, which they reckon equally ufeful for the fame Purpofes.

Some likewife imagine there is no Difference in the medicinal Virtues of the Salt

[^25]of Tartar and thofe of Pearl Athes, or any other of the lixivial Salts of Plants, all which they fuppofe to receive alike the fame Qualities from the Fire: but the contrary to this will I believe be manifeft, from an Examination of the Salts I am going to fubmit to the Reader's Judgment ; the Configurations and Cryftals whereof are fo widely diffimilar, that one can hardly conceive them to arife from exactly the fame Principles in the Salts themfelves, or to produce exactly the fame Effects when applied to other Bodies. 'Tis indeed probable that the effential Salts of Plants, collected in the Form of Cryftals, from the Juices of their refpective Plants, without the Help of Fire, may be different from the Salts of the fame Plants procured by Incineration, and may have different Virtues: but I think fuch effential Salts can hardly differ more from one another, when examined by the Microfcope, than the lixivious Salts of different Plants are found to do; and confequently that there lixivious Salts muft have Virtues very different from one another.

The making effential Salts being a troublefome as well as tedious Operation, and confidered only as a Matter of Curiofity, none of the Shops could afford me any of them; and even of the lixivious Salts, the Opinion of their being all alike has fo much reduced their Number, that had it not been for the
great Civility of Mrs, Clutton and Mr. Corbin, Chemifts and Partners, in Holborn, (whofe kind Affiftance I thankfully acknowledge in this public Manner,) it would have been in my Power to procure very few of thofe I fhall hereafter mention.

C H A P. XXX.

Tartar Vitriolated.

WHE rectified Oil, or rectified Spirit of Vitriol, dropt gradually into Oil of Tartar per deliquium, till it caufes an Ebullition, produces (by evaporating the Humidity) a white Subftance called vitriolated Tartar*.

This diffolves readily in hot Water, and a Drop of the Solution applied on a Slip of Glafs before the Microfcope, begins hiooting round the Edge in great Numbers of very minute and tranfparent Spicula, detached intirely from one another, and without any of that Bafis at the Edge of the

[^26]Drop

Drop which moft other Kinds of Salts form before they fhoot. Thefe Spicula proceed and lengthen in different Directions, and crofs each other at various Angles, as a a and $b b$ hhew, Plate VI.

Some of thefe Spicula are very deeply ferrated, or look rather like the Ends of bearded Darts or Arrows placed over one another, as reprefented at c

A Kind of Star-like Figure will be found here and there amongft the Spiculc, apparently compounded of the above-defcribed bearded Points, and moft commonly, like them, more opake than the other Shootings : a few of the fe appear alone, and others are formed at the Ends of the Spicula, as at d. Some likewife of the Spicula, after a while begin to Spread, and fhoot forwards, in an irregular Manner of branching; towards the Middle of the Drop, as at $g \mathrm{~g}$. Other Figures arife at a Diftance from the Edge of the Drop, with Branches dividing and fubdividing more regularly than the laft defcribed; (fee F.)

During the Procefs, Clufters of hexagonal Planes arife in the vacant Spaces, fome regular, others with unequal Sides, fome perfectly tranfparent, others with a fimall Degree of Opacity, as at e. Thefe laft Figures, which are indeed the proper Cryftalizations of the united Salts, will remain intire upon the Glafs, after all the other Con-
figurations are broken away and deftroyed by the Air.

Among the Spiculce fhooting from the Edges there are many ftrait-lined Figures, whofe Ends are not pointed, but flat and fpreading; (fee ala.) Thefe are chiefly owing to the Tartar; and the Permanence of the hexagonal Cryftals implies that they contain a large Proportion of the Vitriol.
N. B. It frequently happens, when a Drop of this Solution, heated over the Candle, is placed under the Microfcope, the Steams arifing from it fo obfcure the ObjectGlafs, that nothing can be feen through it, until the Glafs be cleared with a Piece of Wanh-Leather, or a foft Linen Cloth.

This is the Cafe likewife in examining feveral other Solutions, as has been before remarked.

C H A P. XXXI.

Flowers of Benjamin.

THE Flowers of Benjamin are Salts obtained by Sublimation from a Gum of the fame Name. Thefe Salts are fo volatile, that on putting fome of the Gum grofsly powdered into a fubliming Pot, they rife with a fmall Degree of Heat into a Cover placed over them; whence they are wiped
out from Time to Time (with a Feather) in the Form of long flender fhining tranfparent Bodies, and fmell very fragrantly.

They diffolve readily in warm Water; and a Drop of the Solution being examined by the Microicope, will be found a very entertaining Object.-For, firftof all there arife from the Edges clear, colourlefs, and tharppointed Cryftals (vid. Plate VI. a a) which paffing towards the Center, fpread out like beautiful minute Shrubs, each having two or three Branches, like what are feen $66 b$. Thefe gradually enlarge and lengthen, divide and fubdivide into leveral Arms and Shoots, in the Similitude of Trees (vid. f.) compofing all together a Reprefentation of beautiful little Groves or Plantations. Some however continue fhort, and fpread into a Sort of Leaves, indented fomewhat like thofe of Dandelion, cc. Little Branches likewife Moot out from Points in the Middle of the Drop, as in the Picture at. g^{\prime} : and fometimes very elegant Figures of another Kind are formed in fome Part of the Drop, compofed of Branches rifing (on a new Bafis) from one another, all arched alike with an equal Curvature, and having the convex Side of each Curve adorned with many little Shootings, at equal Diftances and of equal Lengths, none of which appear on the concave Side of the Curves. All this is Khewn at e.

Vol. II,
M
Thefe

Thefe wonderful. Configurations decay immediately after the Fluid evaporates.
N. B. When a Solution of this Salt has been made fome Days, much of it will be precipitated, and appear in Cryftals at the Bottom of the Phial: and if you intend then to examine it by the Microfcope, 'twill be proper firft to hold the Phial to the Fire, or place it in hot Water, till the Cryftals become again diffolved and taken up into the Fluid. And moft other Solutions fhould be treated in the fame Manner, if they have been long made and their Salts appear precipitated : but after being thus heated they fhould be allowed a few Minutes to fettle, otherwife the Fluid will appear turbid and unpleafant before the Glafs, and the Configurations will not proceed fo well.

> C H A P. XXXII. Salt of Camomile.

wHEN a Solution of this Salt is examined, if much Heat be given to the Drop, the faline Particles will chiefly difpofe themfelves at the Sides thereof, in fuch Figures as are fhewn $a a, b b$; but with a leffer Degree of Heat, they will form more within the Drop, in a wonderful Variety of hexangular Planes, many of which are extremely
Salt of Coral.
tremely thin, flat, and tranfparent (vid. $c c$, and other Figures in the Plate.) Some however have a confiderable Solidity, as the Drawing alfo reprefents. The above Figures foon diffolve and break away, and towards the End of the Procefs feveral Cryftals appear with fquare Bafes, in the Form exactly of thofe of Sea-falt, vid. d, and thefe are more permanent than the others were.

The Tafte of this Infufion is falt at firt, foon after very acrid.

C H A P. XXXIII.

Salt of Coral.

THIS Salt begins fhooting from the Sides, as at a a, (Plate VI.) and proceeds, forming Bodies fome of whofe Parts are opake and others tranfparent, of a darkifh brown Colour, with Channels or Hollows running from Top to Bottom, as reprefented $b b$. There are likewife other of the fame Figures, opake at Botrom, but tranfparent at their Tops, and having none of the fame Channels, in the Manner hewn cc.

In fome Places of the Drop the fame Kind of little Hillocks are feen, adorned with M 2
fur-

164
 Salt of Coral.

furprifing Configurations moft exccedingly minute and delicate, bearing the Refemblance of fome Species of the fmalleft and moft elegant Sea Moffes. It is impoffible to exprefs the Beauty of thefe Figures, which equal any of the fineft Mocba Stones: But an Attempt to give fome Idea of them will be found $d d d$.

After the above Appearances are compleated, and the Procers feems all over, there frequently prefents a new and unexpected Radiation of fine Lines, at equal Diftances from each other; and arifing as it were from a certain Point, in a very regular Order and Delineation, the Lines fhortening gradually on either Side, fo as to compofe all together a femicircular Figure, like that at e. I have found no regular Cryftals of this Salt, nor does it ufually give any Figures at all towards the Middle of the Drop.

The Solution I made ufe of, after ftanding in a Phial two or three Weeks, had a Cruft over the Surface, which taken out and examined by the Microfcope, appeared to be a Congeries of minute Branches, in Shape exceedingly like fome Kinds of Coral.

$$
[165]
$$

CHAP. XXXIV.

Solt of Baum, or Baulm.

THE firft Shootings from the Edges of the Drop, when a Solution of this Salt is examined by the Microfcope, very much reiemble Leaves, vid. Plate VI. a, on the left Side of the Picture. But thefe very foon enlarge and lengthen as at a on the Top of the Drawing ; or elfe like thofe at a on the ri hi Side, which not only lengthen but fivell at their Extremities, till they either divide into two or more Branches, after the Manner fhewn at d and elfewhere in the Drop; or feeming to burft or fplit at their Tops, puhh forth Bundles of fine Hairlike Filaments, and compofe fuch Figures with brulhy Heads as are reprefented at c : which indeed are extremely pretty. Some detached Leaves are ufually formed in the Middle, together with fuch figur'd Cryftals as are there fhewn, amongit which a few bear the Appearance of thofe of common Salt.

When the watery Part feems nearly exhaled, all the forementioned Figures decay and break away, except the Cryftals, which remain fixt: and if a full Drop has been employed, and a confiderable Degree of M 3

Heat

$$
166 \text { Salt of Fennel. }
$$

Heat applied, fome curious Configurations prefent themfelves upon the Glafs, confifting of fhort ftrait Lines, fo difpofed as to form hexangular Figures, with delicate little Branchings therefrom, vid. e e.

This Salt is a very curious Subject for Examination.

C HAP. XXXV.

Salt of Fennel.

THE general Appearance which a Drop of the Solution of this Salt af--fords when examined by the Microfcope, may be feen Plate VII.

After the Drop has been gently heated, innumerable Spicula rife about its Edges, extremely flender and clofe to one another; and amongt thefe, as well as farther within the Drop, many Bodies may be obferved pretty regularly tapering from the Middle towards, each End, fomewhat like the Figure of a Rolling-Pin, vid. a a.-More in the Middle of the Drop are formed Ciyfals oddly flaped, fuch as $6 b$; and likewife others ending pointed like a Wedge. Some again are divided, as c; and here and there a Cryftal of marine or common Salt is found, fometimes in its ufual Figure, and fome-

fometimes having an Opening at each Corner of the Bare, as if the Angles had been artfully taken out. There Differences will be underfood by examining the Figures $d d$.

The Air puts an End to there Forms foo after they are produced.

C HA P." XXXVI.

Salt of Buckthorn.

THIS Salt hots from the Edges of the Drop many Marp-pointed Ppicull, at little Distances from each other; after which the feveral Figures in the Drawing (Plate VII.) form themfelves under the Obferver's Eye ; rome are hexangular Planes, fomewhat opake, and appear with a confiderable Degree of Thicknefs in proportion to their Size, as b; whilft others of the fame hexangular Planes are exceedingly tranfparent, and have no vifible Depth. Parallelograms are difperfed here and there, and forme Rhombi: Indeed the hexangular Figures before mentioned feem like Rhombic, cut off at each End. There appear a few of the Figures c and d, and also of the other feveral Forms reprerented in the Picture.

$$
\text { M }_{4} \quad \text { A Syrup }
$$

A Syrup made from the Berries of this Shrub is an uleful Purgative in Compolitions; but extremely naufeous, and fomewhat too churlifh given alone, unlefs for Perfons of very robult Conftitutions.

C H A P. XXXVII.

Salt of the Berberry.

THE Heat neceffary to put this Salt in Action muft be very fmall, but brifk; otherwife it will harden into a tranfparent Glue, without producing any Figures; the Reafon of which probably is, that being of a vifcous Nature, when more Heat is given than is abfolutely neceffary to put the Particles of the Salt in motion, the watery Parts evaporating, leave this vifcous Juice fo ftrong, that the Cryftals are entangled, and cannot force their Way through it : but are prevented from acting as they do when the watery Parts remain, and the Fluid is thereby rendered lefs denfe.

The Figures it produces feem all to derive their Origin from Spiculce, which protrude and expand themfelves in the Manner to be deferibed below. Mont of thefe Spricule are thickeft in the Middle, tapering to fharp Points at each Extremity, and are
very tranfparent; but others of them terminate more bluntly, and have their Ends opake, whilf their middle Parts only are tranfparent, as at d, Plate VII. Sometimes thete pointed Bodics are fo difpored as feemingly to iffue from one central Point, and form fuch a Sort of Star-like or Spur-like Figure as b at the Top of the Drawing ; or: elle a Figure fomewhat different, refembling b in the Middle thereof.

But the mof remarkable of all the Figures it produces are owing to the lengthening out of certain of the Spiculc, whilft they expand at the fame Time, and puh out again other Spicula from their Sides, which likewife expand themfelves into very pretty tranfparent Forms, not unlike the Leaves of fome Plants, tho' bearing no Similitude ta thofe of the Berberry; an Inftance of this is thewn at d. Others of the fame original Spiculce hoot not fo far towards the Middle of the Drop, but divide and expand them= felves laterally, fpreading out into a broader Kind of Leaf-like Figures, vid. c c c.

Among the detached Cryftals in the Drop there are many of a pențagonal Form, and fomewhat more opake than the reft, terminating at one End with an obture Angle. They are not marked with any Letter in the Drawing, but will eafily be diftinguifhed in looking over it.-I do nof remember this Figure in any other Salt.

The

The young green Leaves of the Berberry Tree held in a Sieve over the Steam of boiling hot Water, rolled up between the Fingers and dried carefully in an Oven not over hot, may eafily be miftaken for a good Bohea Tea; refembling it much in Appearance, and making a Liquor extremely like it both in Tafte and Colour.-This I have myfelf experienced.

C`H A P. XXXVIII.

Salt of Cucumber.

THE firf Shootings of this Salt are for the moft part Parallelipipids, radiating from a Kind of indetermined Center, as at a, Plate VII. Some fingle ones protrude themfelves forwards, widening at the Extremity, and forming Figures like thofe at b. Some curvilinear Forms fhoot alfo from the Sides, with flat Terminations, as at c; and others ending with Sharp Points, as d. A few hexagonal plane Cryftals, as alfo fome Shuttle-figured spicule arife towards the Middle of the Drop, both which are fhewn at e.

I know not any Salt whofe Shootings are fo extremely pellucid as thofe we are now defcribing : For notwithftanding they have

Salt of Peruvian Bark.

a confiderable Degree of Thicknefs, they appear more tranfparent than the cleareft Glafs, and would almoft evade the Sight, were it not for the faint Shadows caft by means of that Thicknefs.

Towards the End of the Operation the empty Spaces are filled up with Shootings from fome of the mof detached Parallelograms, which protrude themfelves forwards, dividing and fubdividing as at f, and that fometimes to fuch a Degree of Thinnefs and Slendernefs as to have the Termination of their Extremities lof to the Eye by reafon of their exquifite Tranfparency; this may be conceived by confidering the Figure g.

C H A P. XXXIX.

Salt of Peruvian Bark.

THE few Shootings which this Salt produces at the Edge of the Drop are of no regular Figure, but refemble thofe at a, Plate VII. The whole Area of the Drop becomes quickly filled with great Numbers of Rhombi, of different Sizes, extremely thin and tranfparent, vid. 6. Some of thefe enlarge greatly, and acquire a confiderable Thicknefs, forming themfelves into Solids of many Sides, as $c c$. Near the Con-

172 Salt of Liquorice.
Conclufion fome Cryftals of Sea-falt are formed, as $d d$; and likewife a few odd triangular Figures, fuch as are delineated at e : Thefe and the Sea-fait remain, but all the other figures break away and foon become deftroyed by the Air.

C H A P. XL.

Salt of Liquorice.

THIS Salt begins fhooting from the Edge with a Sort of Rhombic Spicule, as at a, Plate VII. Some four-branched Figures like thofe of the Vitriols do here fometimes arife, but moulder away before their Ramifications are compleated, leaving their Stamina in the Manner reprefented $b b$. The Middle of the Drop is ufually overfpread with great Numbers of Parallelograms, fome exceedingly tranfparent, being mere Planes ; having fometimes one, fometimes more of the Angles canted, in fuch Sort as to produce pentagonal, hexagonal, Eic. Figures. Others have much Thicknefs, and form Parallclipipids, Prifms, Esc. as at c. Some of the plane Figures now and then protrude an irregular Kind of Shooting, appearing very odd and pretty, vid. d.

C H A P. XLI.

Salt of Butcher's-Broom.

0N giving a fmall Degree of Heat to a Solution of this Salt, Figures will be produced from the Edges of the Drop; at pretty large Diftances from one another, running on in a ftrait Direction, and becoming gradually larger and more clubbed at the End towards the Center of the Drop, but terminating in tharp Points at the End that is next the Edge: which is a Singularity peculiar to this Salt.-There Figures are curioully jagged or indented on every Side from End to End, vid. Plate VIII. $6 b$. Some few however amongft them fhoot out from their Sides others of the fame Kind, and thefe again other ftill fmaller ones; but both in the primary and fecondary Branchings the Shoots appear always on the fame Side, as the two Configurations $d d$ may ferve to fhew.

In the Middle Part of the Drop, and wherever there are Vacancies, two Sorts of regular Cryftals are formed, differing each from other both in Size and Shape. The larger Kind are folid, and feem to be Tetrahedra having their uppermoft Angle and the Edges cut off, and of thefe fome are rectilinear and others cuirvilinear. Their Production
duction is a very entertaining Sight: for amidft a violent Agitation in the Fluid, numburlefs Atoms being feen hurried in ail Directions, they rife on a fudden dir etly upwards from the Bottom, in the fame Shape exactly as juift now defcribed, but fo minute as only to be difcernable by the firft Magnifier, and then they increafe in Bignefs every Inftant, under the Eye, till they appear as large as in the Picture; where at $c c$ and in the Middle of the Drop feveral of them are fhewn. - T he other Sort of Cryltals are very minute, being when viewed through the third Magnifier not larger than Carraway Seeds; they are moftly Rhombs or Rhemboids, fome of which have the two oppofitc acute Angles cut off; there are befides fome Squares and Parallelograms, See a a.

After every thing feems over, and all we have heen mentioning begins to break away, it frequently comes to pafs, that the patient Obferver is prefented with come moft elegant Configurations, compofed of many long Lines, perfectly ftrait and parallel to each other; every fecond or third whereof has at one End a colid Cryftal flaped like the Head of a Spear or Javelin. All the Lines have alfo on one and the fame Side Numbers of thort Lines, iffuing out at right Angles, and at pretty equal Diftances, to ahout half as far as the long Lines are feparated from one another. The long Lines in ge-
Salt of Worinvood.
neral are bounded at their other End by a fingle Line, or Bafe, that makes a right Anglè to them all: a little Variation is however produced, by here and there a fhorter Line that runs parallel to this Bafe.-The above Defcription will be underfood by confidering the Configurations e e:

C H A P. XLII.

Salt of Wormwood.

THE firf Shootings of this Salt from the Edges of the Drop appear of a confiderable Thicknefs in proportion to their Length : their Sides are deeply and Tharply jagged or indented, being made up of many fomewhat obtufe Angles; and their Ends are pointed with Angles of the like Kind. What I now defcribe are the fingle Shoots at a, Plate VIII. But other Shoots frequently branch out from thefe original ones, and they again fend forth others, making all together a very pretty Appearance, vid. 66.Thefe laft Configurations in their Figure and Difpofition bear a near Refemblance to thofe of Butcher's Broom, Shewn at $d d$: but are larger and more deeply indented.

The Cryftals of this Salt are very different from one another, confifting of Squares, Rhombi, Parallelograms, equilateral Hexa-
gons, fome of the Figures at $c c$ in the Butcher's Broom, a Sort of Shuttle-like Forms, and feveral irregular Bodies; all of which will be beft conceived by a View of them at c.

A fmall Degree of Heat given to the Drop produces more of the Corfigurations, a greater Heat more of the Cryftals, many of which are at firft triangular, but foon lofe that Shape: and indeed the whole is very fpeedily deftroyed by the Air.-This and the Subject immediately preceding exhibit no Cryftals of marine or common Salt.

C HAP. XLIII.

 Salt of Tobacco.IF a moderate Degree of Heat be given to a Solution of this Salt, its firt Shootings will be from the Edges of the Drop, in flender tapering Figures ending with very fharp Points, but at confiderable Diftances from one another, and confequently not extremcly numerous: along with thefe are likewife formed other Figures nearly of the fame Kind, but intirely detached and farther within the Drop, and contrary to the former, in the Circumftance of having their thicker Ends towards the Center of the Drop, and the Gharper pointing towards its Edge. They are compleat Figures, and refemble Needles, or rather that Sort of Nail called a Brad,

Brad, which has its Head or larger End flat. Both thefe are fhewn at a, Plate VIII.

When a little more Heat has been given, other Spiculce are produced from the Edge, whofe Ends fpread on either Side, and then terminate in a Point: and which have all along their Sides triangular pointed Cryftals, not oppofite to one another, but placed alternately, fo as to reprefent a Zigzag with a Line drawn through its Middle, vid.b.-The regular Cryftals of this Salt are produced in the Middle of the Drop, being either Hexagons or Rhombi, as at c.

When the Moifture is nearly exhaled, there are fometimes feen to fhoot from, or rather under the Spicula, upon the Plane of the Glafs, a Reprefentation of Leaves, very fmall at their firft Appearance, but increaling gradually to what is fhewn at d.-There I have feen but twice.

A violent Agitation may be difcovered in the Fluid by the firf Magnifier, during the whole Procefs, but chiefly at the Beginning, and extremely minute Cryftals rifing from the Bottom.

Oil of Tobacco is a ftrong Poifon to many Animals: 'tis faid a Thread wetted therewith, and drawn by a Needle through the Skin on the Back either of an Eel or Viper, will make it die immediately. This I have never tried.

Vol. II.
N
CHAP.

(178)

C H A P. XLIV.

Salt of Carduus.

THE Cryftals of this Salt (for it fhoots out no Configurations) are of different Sizes and Figures, difperfed every where about the Drop. Thofe near the Edges are very minute tranfparent Parallelograms, appearing in great Numbers, as a a, Plate VIII. In the Middle arife larger Cryftals, fhaped exactly like thofe of marine Salt, 66 . There are alfo much larger eryftaline Bodies, formed here and there, having a confiderable Thicknefs and Solidity, and confifting of Hexagonal and Rhomboidal Planes, vid. cc. It produces likewife fome odd figured Bodies, which may be feen at $d d$.

C H A P. XLV.

Salt of Lavender.

NO Configurations are produced by this Salt and the laft, that feemingly pufh from the Edges of the Drop, as in moft of the preceding Kinds; but many regular Cryftals are formed in cvery Part of it, after a moderate Degree of Heat has been given to it. Thefe Cryftals are of various Figures,
viz. plain Rhomboids, having one or more of their Angles very much elongated, (fo as to be fometimes twice or thrice the Length of the Rhomboids from which they iffue,) Rhombi, Squares, Parallelipipidons, and Hexagons with unequal Sides, or rather equilateral Triangles with their Angles cut off. In fhort, the Figures of this Salt will much better be comprehended by applying to the Picture, Plate VIII, than by any Defription which can be written.

C H A P. XLVI.

Salt of Mugwort.

AT the Beginning many fine Spiculce of different Sizes, appear at and about the Sides of the Drop, along with other flender Bodies fomewhat fwelling in the Middle, but Charply pointed at each End, vid. a a, Plate VIII. Triangular folid Cryftals, and various other Figures, are alfo formed here and there as reprefented in the Picture. But the moft remarkable Part of this Subject, is a very elegant Sort of Configuration towards the Middle of the Drop, as at b; and likewife Shootings of the fame Kind from its Edge, that refemble the Branches of fome Plant, rifing fingle, with Leaves re-
gularly difpofed on both Sides of each Stem, as fhewn by the other 6 . - In the Middle of the Drop at c are Figures of another Form, which are very fingular and pretty. Thefe all break away and become confufed very foon after they are formed

C H A P. XLVII.

Salt of Hartshorn.

ON the Application of a very fmall Degree of Heat, Salt of Harthorn hoots near the Edges of the Drop, into folid Fi gures fomewhat refembling Razors or Lancets where the Blade turns into the Handle by a Clafp, as at d. Plate IX. This Appearance is however wholly owing to the Junction of a fmaller and larger Body at their fmaller Ends, either a right or an acute Angle, as will be evident on confidering fome of thefe Bodies that appear fingle.

The Configurations of this Salt are produced with great Velocity, and are Figures fomewhat opake, fhooting from the Edges of the Drop, on both Sides a main Stem, and with a Kind of Regularity, rugged Branches like thofe of fome Sort of Coral, vid. a a. But fometimes inftead of Branches on both Sides the main Stem, Tharp Spicula, fome plain and others jagged, are protruded

to a confiderable Depth on one Side only, as at b.

As the Fluid exhales, and the Attraction of the Particles becomes more ftrong, fome one of the branching Figures generally extends to a great Length, producing on one Side Shoots that are rugged and irregular like thofe in the fmaller Figures at $a a$, and on the other Side a curious regular and delicate Sort of Branches, refembling thofe of fome Plant, with elegant fmall Leaves in the Manner fhewn at c.

C H A P. XLVIII.

Salt of Urine.

ASolution of this Salt fhoots from the Edges of the Drop long Parallelograms in the Manner of Nitre, but with this Difference, that Nitre produces folid hexagonal Pillars, cut off obliquely at their Ends, in the Figure of a Chiffel, whereas thefe are only plain fuperficial Parallelograms, whofe Ends are flat, as a a, Plate IX. But in other Places along the Sides of the Drop folid Angles are formed, that are feemingly the Rudiments of common Salt, (vid. b.) though neither this nor Salt of Harthorn afford any regular Cryftals of common Salt.

Some of the Parallelograms increafe much in Size, and fpread themfelves in the Middle, fo as to change their firft Figure, and become three or four Times bigger than the reft; and thefe have a dividing Line that runs through their whole Length from End to End, whence iffue other fhort Lines, at fmall Diftances, oppofite to one another, all pointing with the fame Degree of Obliquity towards the Bafe, as may be feen at $c c$.

Among thefe enlarged Figures fome few fhoot ftill forward and tapering towards a Point; butbefore they form one, fwell again, and begin as it were anew : and thus they proceed feveral Times before their compleat Figure is finifhed, which is at laft a Kind of long fharp-pointed Body, compofed of more or fewer Joints as at $d d$.

After the whole Procefs feems at an End, many fmall Branches form themfelves on the Surface of the Glafs, as in the preceding Salt (See the Picture,) though their Figure is not juft the fame. - All the above defcribed appear when a very moderate Degree of Heat is given, and the Drop is applied to the Microfcope as foon as any of the Salts cryftalized are feen white about the Rim. But the Figures $1,2,3,4,5,6$, are the regular folid Cryftals of this Salt, when it is let diffolve in the Air, and no Heat at all is given.

CHAP.

[183]

C H A P. XLIX.

Salt of Millepedes, or Wood-Lice.

THIS Salt fhoots from the Edges in a Manner very beautiful, and different from any other Kind yet obferved. It begins by iffuing from the extreme Edge of the Drop in many Lines parallel to one another, but in a very oblique Direction to the Line that borders the Drop; and other parallel Lines are produced from thefe, in an Angle fomewhat more than right to them, the Angles of which are not fharp but rounded, fee acd, Plate IX. Many tranfparent Parallelograms of various Length and Size are formed by thefe Lines, fome whereof afterwards fhoot forwards into long Spikes which fpread at the Sides with irregular Edges, as at $d d$. In the mean while other fhort Lines proceed outwards from the very Edge of the Drop, in a Direction quite contrary to thofe we fpoke of firtt, making the Border of the Drop appear very prettily ferrated or fringed, as may be feen at the Bottom of the Configurations acd. Another Sort of regular Figures are likewife produced from the Sides of the Drop, in the Manner of thofe 66. When the Operation is nearly ended, there arife Abundance of long Spiculce that range themfelves fomewhat in the Form of

Plants,
$184 \quad R \quad H \quad E \quad U \quad M$.
Plants, filling up moft of the vacant Places in the Drop as the Picture fhews. This Salt has but one Sort of regular Cryftals, which is hexagonal, and appears as at e.

C H A P. L.

$R \quad H \quad E \quad U \quad M$.

wHEN People get what they call a running Cold, it is not unulual for a thin clear Humour to be difcharged through the Noftrils, in fo confiderable Quantity as to wet feveral Handkerchiefs, and even to fall from the Nofe in Drops, if not prevented by frequently wiping it away. This Humour is what I mean by Rbeum.

Being myfelf very fubject to this Diforder, which is commonly preceded by a Senfation of Fulnefs and Rigidity in the Mufcles of the Head and Face, and attended with much Heat, Rednefs and Sorenefs of the Noftrils and Parts immediately adjoining, during the Difcharge, (which continues commonly three Days, at the End whereof it begins to thicken and become lefs acrid:) I was defirous to know whence this limpid Humour could produce fo much Irritation and Uneafinefs; and as a very little Confideration made me fuppofe it mult be owing to its being loaded with pungent Salts of fome fort

$R \quad H \quad E \quad U \quad M$.

or other, I took the firft Opportunity of examining it by the Microfcope, and had the Pleafure then, and many Times fince, to find my Conjecture confirmed by undeniable Demonftration.

For this Rheum is fo faturated with Salts, that a Drop on a Slip of Glafs will foon fhoot in a very beautiful and furprifing Manner, either with or without Heat: but if heated to about the Warmth of Blood, and then placed under the Eye, many lucid Spots or rather Points will be feen rifing, and increafing gradually, till their Form fhews itfelf to be quadrangular, with two tranfparent Diagonals croffing one another, fee a and $d d$, Plate IX. Thefe Diagonals fhoot foon after far beyond the Square, protruding other Lines, at right Angles, from their Sides; (vid. cc.) which other Lines produce ftill fmaller ones from their Sides alfo, in the Order of the firtt ; and thus they go on to form Configurations, whofe Elegance of Beauty nothing but feeing them can give an adequate Idea of: tho till the Reader can himfelf make the Experiment, a Reprefentation of their general Figure is fhewn $b b$, and in other Places of the Drop: where great Numbers appear, in their feveral Gradations, and after their ufual Manner, filling up almoft the whole Space,

The fine Branchings in a little while break away, but the central Squares remain like

$186 \quad R \quad H \quad E \quad U \quad M$.

d d.-Some Figures at their firft Beginning rife in the Shape of Croffes, which Appearance is owing to the Shootings, from the Corners of the little Squares, before they are large enough to be vifible even by the deepert Magnifiers. The Number of main Branches in each Configuration is moft commonly four, but fome are found with five or more : the Branches likewife are fometimes curved; but thefe two Cafes I take to be rather accidental than natural.

When a Drop of Rheum is fet to cryftalize without any Heat, inftead of branched Configurations over the whole Area, as in the above Defcription, fuch are formed only in the Middle ; but about the Edges Plantlike Figures are produced, fhooting feveral Stems from one Point, and refembling a Kind of Sea-Mofs, vid. E. Branchings fomewhat of this Kind are flewn in Salt of Harthorn.

There Experiments fhew, that upon taking Cold the Humours become overcharged with Salts : how they get there, and by what Means they may be difcharged, is a Matter well worth Enquiry ; but fuch Difquifitions muft be left to the Gentlemen whofe immediate Profeffion it is to ftudy the various Diforders of the human Body and their Cure. I may however prefume to fay, that as all Solutions of Salt become gradually weaker, and may be rendered quite infipid by the Affufion

$R \quad H \quad E \quad U \quad M$.

Affurion of a watery Fluid; therefore, in Cafes of this Nature, the frequent drinking of warm Gruels, Teas, and fuch fimall watery Liquors, muft in like Manner gradually dilute, feparate and difperfe the acrid Salts, and be probably the moft ready Means of carrying them off either by Urine or Perfpiration.

2uere. May we fuppofe thefe Salts to have been abforbed from the external Air at the Time of catching Cold *, or to have exifted previoufly in the Body, tho' fheathed and harmlefs till let loofe, put in Motion and rendered acrid by the retained Matter of Perfpiration: as feems to be the Cafe in moft of the animal Juices when tending to Putrefaction?

* Mr. Freke fays, in his Effay on the Art of Healing, where he fpeaks of taking Cold; "tho' every one knows "t that Colds proceed from receiving the Air into our Bo" dies improperly, yet few confider the State of the Air, " as abounding at one Time with all the Means of reftoring
* Health to us and all the reft of the Creation; and at " another as containing in it the Caures of Plagues, "Peftilence, and Famine, by its occafioning Death to "Cattle, and Blights to all the Fruits of the Earth." Pages 147, 148 .

C H A P.

[188]

C H A P. LI. of Camphire.

cAMPHIRE is a fort of refinous white Subitance, either exfuding from certain Trees in the Iflands of Borneo, $7 a$ va, Japan, and other Parts of the EaftIndies, or intermixed with the woody Fibres in the Bodies and Roots of fome Trees growing in thefe Countries. -It is not foluble in Water, but diffolves readily in Spirit of Wine, from which faturated therewith my Experiments have been all made.

If any Heat be given it muft be very gentle, and the Microfcope and Eye applied as foon as poffible; for the Shootings form fo quick they will otherwife efcape the Sight. They radiate from a Center, either with fix or four, rarely with five Branches, whofe Length is nearly equal: each Branch is feather'd with fine Lines that diminifh gradually to a Point, whereby the Figures have greatly the Appearance of Flakes of Snow; and the Points of fome filling the Vacancies between thofe of others, fmall are the Spaces that are left uncovered. Some few fingle Branches are produced about the Edges of the Drop. A pretty good Reprefentation of thefe very delicate Configurations may be feen in the XIth Plate.

If no Heat at all be applied there will be more Time to examine the Configurations; nor even then will much Patience be required, for the Camphire and Spirit of Wine are both fo volatile, that if the Drop be fpread thin, they will foon begin to form, and quickly after they vanifh quite away.

Camphire is of great Service when by any Accident too large a Dofe of Opium has been taken.

C H A P. LII.

of Manna.

THIS fweet-tafted Salt is the Concretion of a Juice iffuing from a kind of Afh Tree during the Heat of Summer: that from Calabria is accounted beft. It eafily diffolves in Water made fomewhat hot, and a Drop of the Solution is a very pretty Object for the Microfcope.

Its firft Shootings are Radiations from Points at the very Edge of the Drop: The radiating Lines appear opake, but extreme1 y flender, vid. a a a Plate XI. Amongft thefe arife many minute tranfparent Columns, whofe Ends grow wider gradually as they extend in Length, and terminate at
laft with fome Degree of Obliquity, $b 6$. All the Figures round the Edges being formed in Clufters, and making but half a Circle, bear a near Refemblance to Bundles of Ipun Glafs.

Some few Figures radiating from a Center every Way, and circumicribed byan Outline, are produced within the Drop, in the Manner fhewn $d d$.

But the moft furprizing and elegant Configuration is compofed of many Clufters of Radiations fhooting one from another over great Part of the Drop, and making all together a Figure not unlike a certain very beautiful Sea-Plant. Vid. C. The regular Cryftals may be feen at e.

The Manna I examined was, I believe, genuine ; but I am told a great deal is made abroad, and fome in England, by an artful Compofition of Honey, Glauber's Salt, and perhaps fome other Ingredients. A late Writer fuppofes they make it abroad of Honey, Sugar, and the Juice of a Tithymal or Spurge *. It is worth obferving, that in the

- Cbrifoph. a Cofa fays, that he faw a figitious Manna fold at Ormuz, which was alfo carried into feveral l'rovinces of Perfa, in larger Flakes and not fo white as the genuine; but it was cheaper, and purged violently. And he was informed of its Compofition by a certain Brachman, viz. white Starch, fome true Manna, Scammony, a Kind of Seed brought from Bengal by the Name of Vija, the Powder of a Root called Dante, and fome Sugar, mixed together with a little perfumed Water, and expofed to the Sun.-

Thbe Vegetation of Metals.

the Midft of the largeft Flakes of Manna little Twigs are frequently found, not thicker than Straws, round which the Manna feems to adhere as Tallow does round a Wick that is dipped therein.
N. B. I fhould here direct an Examination of Sugar, but could never find a Way of bringing it to fhoot or cryftalize before the Microfcope. All other Salts after Evaporation will fhoot their Cryftals in a cool Place, but Sugar requires a hot Stove to make it cryftalize. The Figure of its Salts candyed may be feen in Plate XIV. of the Microfcope made eafy.

C H A P. LIII.

Concerning the Vegetation of Metals.

AFTER what has been already fhewn and defcribed, the confiderate Reader will be at no great Lofs to judge of what Writers commonly call the Vegetation of Metals, and the Refucitation of Plants, both which I fhall treat of briefly.

Mefne likewife mentions the adulterating of Manua with Sugar and the Leaves of Sena: but adds, that this Fraud difcovers itfelf by its growing foft and liquefying.

When

When any Metal is diffolved in a Menftruum, Multitudes of its feparated and very minute Particles are fufpended in the Menftruum, as are likewife the Particles of its Salt or Vitriol. In this Mixture, when fet to reft, many of the falt or vitriolic Particles are brought together, after a while, by Precipitation and Attraction, carrying with them Particles of the Metal; and form Cryftals, in Figures peculiar to the Metal diffolved : viz. Lead produces Cubes, Tin quadrilateral Pyramids; Copper produces ob-lique-angled Parallelipipids, and Iron rhomboidal Cryftals. This is the Cafe of one Metal diffolved fingly in a Menftruum without any Mixture; and no farther Alteration happens by keeping, than that more Cryftals will form like the firft, or that the firft become enlarged, by the Precipitation and Attraction of more of the vitriolic Salt : Perhaps too fome of the metallic Particles (if it has been over-charged) will be found at the Bottom of the Fluid, though great Part of them will always remain fulpended.

But if different Metals or metallic Subftances be diffolved in the fame Menftruum, or in different Menftrua, and afterwards mixed together: or if other Fluids be poured into any Solution of a Metal or Mineral, the fufpended metallic and vitriolic Particles, having different Degrees of Attraction and Gravity, are precipitated and attracted

Arbor Diance, or, the Silver Tree. 193

attracted by one another in a Variety of complicated Directions, and unite in Configurations extremely wonderful and pretty. Some Productions of this Sort have been difcovered by Accident, and called the Vegetation of Metals, and many more might undoubtedly be found, were Trials made with Mixtures of different metalline Bodies and different Menftrua. I thall give a few Examples of fuch metallic Configurations.

Arbor Diane, or, the Silver Tree.
Diffolve an Ounce of fine Silver in four Ounces of Aqua Fortis: diffolve likewife in one Ounce of Aqua Fortis as much Quickfilver as it will bear: mix the two Solutions in a clear Glafs with a Pint of Water, fop it clofe, and after a Day it will begin to grow.

Or, diffolve in Aqua Fortis of pure Silver one Dram ; put to the Solution, of diftill'd Vinegar and Water each one Ounce: filter, and add one Ounce and a half of Quickfilver ; mix, and thake the Whole fome Time, in a round clear Glafs Veffel, ftopping the Mouth clofe with your Finger. Standing quiet 24 Hours it will hoot into Branches of various Figures.

Monf. Homberg tells a Way of producing a metallic Tree much fooner, after the Preparations are got ready.-Make four Drams of fine Silver into an Amalgama Yoz. II.
without:
194. Arbar Martis, or, the Iron Tire. without Heat, with two Drams of Quickfilver: difiolve this Amalgama in four Ounces of Aqua Fortis: pour the Solution into twelve Paris Pints (about three Gallons) of common Water, ftir it well together and keep it in a Glafs Veffel well fopped. To about an Ounce of this Water, in a fimall clear Phial, put the Quantity of a fmall Pea of the common Amalgama of Gold or Silver, which hould be as foft as Butter. Let the Phial fand a few Minutes, and you. will fee frall Threads or Filaments rifing perpendicularly from the little Bulb of Amalgama, and thrufting out from their Sides little Branches in Form of a Tree. The Bulb of Amalgama will grow hard, and be like a Pellet of white Earth, but the little Tree will be of a bright Silver Colour.The ftronger the firft Water is made, the fooner formed and fuller of Branches will the Tree be.

Albertus Magnzus is faid to have produced a metallic Tree before the King of France, while he fat at Dinner ; I fuppofe by fome fuch Method.

Arbor Martis, or, the Iron Tiec.
Diffolve Iron Filings in Spirit of Nitrc, pour on Oil of Tartar per deliquium, and a Sort of Branches will be formed and adhere

Arbor Veneris, or, the Copper Tree. 195

to the Surface of the Glafs, reprefenting Leaves and Flowers.

Arbor Veneris, or, the Copper Tree.

The feeming Vegetation of Silver and Iron juft before defcribed, I give from other Writers; but this of Copper is I believe entirely a new Difcovery: and I can affirm, from my own' Experience, that it is extremely wonderful and pretty, and made with little Trouble.
In half an Ounce of Aqua Fortis, let a bright Halfpenny, or fome fmall * Piece of clean pure Copper remain for about twelve Hours, and then take it out. Diffolve a little Quick-filver in as fmall a Quantity as you can of the fame or ftronger Aqua Fortis. The Solution will be white, and like Flour and Water ; at which Inftant it muft be put into the firf Liquor, which will immediately become of a lovely blue, and throw down fomething of a white Sediment, but have very little Body or Confiftence.

[^27]:96 Arbor Veneris, or, the Copper Tree.
Have ready fome Salt Ammoniac finely powdered, whereof pur in a very little at a Time, ftirring it about till it diffolves, makes the Mixture of a blucihb white, and gives it a Confiftence like to Starch; which Condition Thews it fit for your Purpofe.

File bright any fmall Piece of I:on, (the pointed End of a Nail about an Inch in Length, or a fmall Nail of that Length called a Brad, does as well as any Thing) place it on the Middle of a Piece of clear Glafs of two or three Inches in Width: then fiering the Mixture with a Quill, let a Drop fall from the End of the Quill upon the Iron, and wet it therewith all over (or dip the Iron in the Mixture, before you lay it on the Glafs, till it appears of a Copper Colour, add another Drop or two of the Mixture, and with your Quill fpread it to equal Diftances from every Side of the Iron, an Inch or more, laying it fo thin as to be tranfparent. Let it remain quiet in an horizontal Pofition, and in a little while you will difcern with the naked Eye Ramifications of the pureft Copper thooting from the Sides of the Iron, reiembling the moft elegant Branchings feen in Mocha Stones, (which may perhajs be produced by Mixtures in the Earth fomewhat a-kin to thefe) or like fome of the moft minute and delicate Sea-molfes. They will grow continu-

$$
\text { Arbor Veneris, or, the Copper Tree. } 197
$$

ally larger for Hours or Days, in proportion to the Extenfion of the Liquor round the Iron. For the Copper Particles afloat in the Fluid, being firft of all attracted to certain Points in the Iron, and afterwards attracting one another in an orderly Succeffion, arrange themfelves, by the Influence and Co-operation of the Salts wherewith they are now joined, in fuch Manner, as to compofe by juxta-pofition a Refemblance of the moft regular and beautiful Vegetation. And this Attraction and Formation of new Branches feems to go on, until all the Copper Particles in the Fluid are attracted and difpofed by one another in the fame wonderful Direction and Order.

Left I fhould not have expreffed myfelf with fufficient Clearnefs to be perfectly underftood, I have given a Drawing, taken with confiderable Exactnefs, of one of thefe Productions, which now lies before me, and has been growing four Days: (See Plate the laft) this will thew the Manner of placing the Nail, and fpreading the Liquor round it, and likewife what may be expected from it. The Drawing is not magnified, but the real Size of the Object, which is large enough to be feen plainly by the naked Eye.

The chief Difficulty in this Experiment arifes from the great Difference in the Strength and Manner of the Aqua Fortis's being prepared at different Shops, and even at

198 Arbor Veneris, or, the Copper Tree.
the fame Shop at different Times *: which is the Reafon I could never exactly afcertain by Weight the juft Proportion of the Mercury and Salt Ammoniac; that depending on the Strength and Compofition of the Aqua Fortis; and therefore will admit of no other Rule than obferving the Colour and Confiftence of the Mixture, which if not white enough wants Mercury, and if too thin wants Salt Ammoniac, or both. But as neither of thefe mult be in Quantity to weaken much the Solution of Copper, 'tis advifeable to. ftir them in by a very little at a wime. As mucli of the Solution of Mercurye:as may amount to about $\frac{1}{\text { To }}$ Part of the Whole, and four or: five Grains of Salt Allumiontac to half an Ounce of Aqua Fortis, is ufund!y near the Mark. If right, after ftand ingla little, a thick white creamy Matter rifas! to the Top, a white Sediment falls to the Bottom, and the Middle is a fine tranfparent blue Liquor. When ufed it muft be titrred: together, and employed before it fepajates: and wheis fpread upon the Glafs it appears of a bleuifh white; which Ground is

* Same Aqua Fortir l bought became in diffolving Copper not of a blee but of a green Colour; but on putting in the Miercury jt changed to a molt lovely blue, and made the hett Misture I ever had; for it might be feen to vegetate in a Minute's Time: and produced, in a few Hours, vigorous Branches of an Inch in Liength. But there is foime Nicety requifte in the Management of the Mercury; for the Minute it is diffolved by the fiqua Fortis, even before the Fermentazion is'quite over, it mult be mixed with the Solution of Coppor, or elfe it will concreie into a white Subtance like Salt, and never mix intimately with the Copper Solution.

Arbor Venetic, or, the Copper Tree. 199

fo fine a Contraft to the Colour of the Copper, that when the Branches arg forme it looks like the finer Mocha Stone: and a Jeweller to whom I hewed one of there Productions told me, a Stone like that would be worth an hundred Guineas.

This Experiment feems of great Import tance; ferving to explain hows Ramifications of a like, Appearance are produced, either on the Surface or in the Figures of Slate, Flints, Agates, Mocha Stones, Florentine Marbles, Exc. and perhaps even in their very Subfeance at the Time of their Formation, by the Intermixture of faline and metalline Particles; and alfo how Metals, diffolved by and incorporated with the faline Juices of the Earth ate formed into Branches and Sent to vegetate *. It was difcovered, accidentally, by the very ingenious Mrs. Colembine, of the City of Nor'-

[^28]200 Arbor Veneris, ors the Copper Tree. wich, in her Searach after-new Colours, from Copper, for painting in Miniature. The Scarict-Dyers ufe in their Bufinefs Aqua Fortis faturated with Tin, and make no Secret of it ; but one of that Trade, who is thought to excel in the Richnefs of his Scarlet, prepares his Aqua Fortis after a Manner known only to himfelf. In fome of this Mrs. Golembine diffolved Copper : and happening to leave a Piece of Iron in the Mixture, the was furprized with the Branchings from it, and thewed them to my very ingenious -Friend and Correfpondent Mr. Williann Arderon, F. R. S. who by her Defire fent an Account thereof to me, (in June 1751) and withiie fome of the fame Aqua Fortis; whereinto I put an Halfpenny, and let it remain fous orfive Days according to his Directions; in which Time the Aqua Fortis acquired the Confiftence of Starch of a pale blue Colour ; and on applying it to a Nail, in the Manner deforibed already, it might, in a very few Minutes, be feen to fhoot out Branches, that would continue growing five or fix Days, according to the Extenfion of the Fluid; and in numberlefs-Trials it never failed once. The Branches were evidently of a pure and frielly cöloured Copper, riing above the Fluid, exactly regular, ànd pérfectly diftinct and feparate; ; as the Drawing, which was taken from a:Production by the fame Liquor, that thad been growing four Days, will thew.

This Aqua Fertis, which was very clear

Arbor Veneris, or, the Copper Free. 201

 and pale, with a flight Teint of a-pearly $\mathrm{Co}{ }^{-}$ lour, was fuppofed to be only faturated with Tin: but on trying. Tin with other Aqua For tis, and making Experiments with Aqua Fortis prepared by other Scarlet Dyers, we found ourfelves difappointed and the Vegetation very imperfect.Aqua Fortis bought at feveral Shops in London, corroded, or rather burnt the Shavings of \mathcal{T} in, with great Fermentation, Heat and Violence; reducing them to a white Pafte-like Subftance, that lay at the Bottom and left the Liquor perfectly colourlefs: and when the Copper was afterwards put in, conduced not at all towards giving the Mixture a Confiftence, or promoting the Branchings out; whereas the Tin in Mrs. Colembine's Aqua Fortis was kept fufpended, threw down no Sediment, and thickened the Mixture. But as that Aqua Fortis, can not be got by People diftant from Norwich, many Endeavours have been ufed to produce the fame Effect by other Means: and we luckily found it might be done by the Method juft now defcribed. We difcovered alfo, in making Experiments without Number on this Occafion, that different Kinds of Branchings equally furprizing and beautiful may beproduced by different Mixtures. Vize vijuey

Aqua Fortis faturated with Copper, and applied to a Nail, will without any Addition hoot forth very pretty Branches; after ftanding: quiet a few Hours, if a due Proportion

202 Arbor Veneris, or, the Copper Tree.

 portion of Nitre be in the Compofition of the Aqua Forzis.- A like Solution, with the Addition of Salt Ammoniac*, will fhoot fooner and ftronger.

If fome Nitre and Alum powdered, and in equal Quantities, be put to the fame Solution of Copper, inftead of Salt Atnmowiac, Branches will be produced, of quite another Fafhion and Chanacter.
7. Diflolve 7 or, 8 Grains of \mathcal{T} in Shavings in hall an Ounce of Spiritit of Nitre: this will beveffected without great Ebullition, and the Metal be intirely fufpended, i Put into the Solution a clean Halifenny, which take out after i2 Hour's ; then add a few Grains of Salk: Ammoniac, putting it in by little and little, and trying the Mixture from Time to Time. This fhoots very well.

- Aqua Fortis fent me from Norwich, (inade there by Mr. Finch) Moots very well cither with or without \mathcal{T} in. It diffolves \mathcal{T} in without, any Precipitation, and afterwards ácquires a Confiftence with Copper, like that of Miss; Colcmbine.-Five Grains of Tin were put in to, 7 Pennyweight of, this Aqua Fortis: Indef's than an Hour hun. Half pemny was putiinto the Solution; and two Hours after, a Nail being dipped in the Mixture, (which was then as thick as Starch) and placed upon the Gilafs with fome more of the Mixture sound it, began to regetate in five Minutes.

[^29]
Arbor Veneris, or, the Copper Tree. 203

An Halfpenry was put into four Pennyweight of the fame Aqua Fortis: four Hours after a Nail was dipped therein, and placed upon the Glafs, and in 15 Minutes the Copper fhot itfelf all round. Salt Ammoniac added to it quickens the Experiment and makes the Shootings , ftronger.

A Solution of Copper in Aqua Regia fhoots out pretty Branchings of Copper, and better ftill if fome Salt Ammoniac be put to it after the Copper is taken out.

Tin will diffolve and be fufpended in Aqua Regia: it blackens the Liquor during the Ebullition, but leaves it at laft clear:without any. Precipitation.-Difolve 7 or 8 Grains of Tin in half an Ounce of Aqua Regia, then put in an Halfpenny, which let remain 24 Hours: This Mixture will have the Confintence of Starch, and will vegetate round the Nail ; it is of a dark green Colour. 'Twill be improved by a little Salt Ammoniac.
I could give many other Experiments of this Nature, but the Curious and Ingenious will be able from thefé Hints to make Difcoveries themfelves of a great Variety of Branchings, by diffolving Copper in different Menftrua; and by adding Mercury, Tin, Nitre, Alum, blue Vitriol (which contains Copper, Corrofive Sublimate, Saccharum Saturni, Borax, Ecc. This may caffily be done, by adding which they pleafe to a Drop or two of the Copper Solution upon a Plate of Glafs, and trying it with a Nail: and if they like

204 Arbor Veneris, or, the Copper Tree.
like the Effect, the fame Mixture may then be made in a large Quantity and kept in a Phial to entertain them at any Time; for all thefe Mixtures may be preferved in good Condition many Months *.

It may be proper to obferve in general, that thofe Mixtures are the moft agreeable which have fome Body or Conffifence; and that fuch Confiftence is given by adding a Solution of Mercury to the Copper Solution, and then putting in Salt Ammoniac; or by diffolving \mathcal{T} in in the Menftruum before the Copper is put in. If the Mixture corrodes the Nail it never does well; or if it turns green round the Sides thereof, which it will do when overcharged with Salt Ammoniac ; but defpair not of any Nail's fhooting till it has lain twelve Hours.

If you can procure Aqua Fortis that will diffolve and fufpend Tin, (not burn it into a white Powder) the whole depends on leaving it of fuch due Strength, that it may be able to difiolve Copper enough, after it has diffolved the \mathcal{T} in, and yet not be fo ftrong as to corrode and raife Blifters on the Nail moiftened therewith, thereby difcolouring the Copper and fpoiling the Experiment.

[^30]Arbor Veneris, or, the Copper Tree. 205
On the contrary, if too much Tin be diffolved in the Aqua Fortis it becomes whition or milky, diffolves not enough of the Copper, and is too weak for Vegetation. Difap~ pointments will alfo happen if Care be not taken in proportioning the Mercury and Salt Ammoniac, when they are employed: and yet the certain Weight and Meafure cannot be laid down, from the great Difference in Aqua Foris.

The Nail or Piece of Iron fhould be filed bright at the Time 'tis ufed, and its. Surface made fo even that it may come clofe to the Glais its whole Length. 'Tis beft to hold the Nail in the Mixture for a Second or two, till it is of a Copper Colour, before you place it upon the Glafs : your Shoots will thereby be made the fronger, as the Copper Particles floating in the fmall Quantity you put upon the Glafs, finding the Iron already covered, will difpofe themfelves more into Branches. But doing this often will impoverih your Mixture by drawing the Copper out of it: and therefore 'twill be right to keep fome feparately for fuch an Ufe.

The Branchings pufi out to the Extremity of the Drop, and then frequently turn along the Edges, ftill dividing into fmaller Ramifications, till at laft they run into one another and become confufed; or elfe a yellow Tinge drawn from the Iron, diffufes through the Fluid and renders them obfcure ; but neither

206 Arbor Veneris, or, the Copper Tree. of thefe happen till the Vegetation is nearly at an End, which is not till after fevera! Hours, and in fome Sorts feveral Days. They may however be preferved in good Condition, by preventing any farther Action of the Salts when the Shootings are advanced to their utmof Perfection, if at that Time the Nail be taken away carefully with a Pair of Nippers; then foaking up the Liquor where the Nail lay with a little Brufh or Rag, dip the Glafs gently into Water; and hold it there a few Seconds. Hereby the Shootings are fopped, the Branches are left upon the Glats in very good Order, and if another Glafs be put over them, guarded with Slips of Cork as directed page $3^{6 \text {, they may be }}$ kept many Years. Sometimes indeed they will turn green (that is, grow rufty) but as their Forms continue, it takes but little from their Beauty.

Tho' all thefe Ramifications are large enough to be feen diftinctly by the naked Eye, being frequently above an Inch in length, 'tis very defireable to examine them by Glaffes through the different Stages of their Progrefs; for the Microfcope difcovers on forme of them the Appearance of Flowers and Fruits, and fhews many curious Particular's not elfe to be conceived. The $4^{\text {th }}$ or 5 th Glafs are beft for there Subjects, which require no great Magnifier.

Copper

Arbor Veneris, or, the Copper Tree. 207
Copper cannot perhaps be broughit to vegetate foftrongly any W ay as by being diffolved in acid Spirits; but having in the Courfe of my Experiments difcovered other Means of bringing it to produce very elegant Branchings, tho' fo fmall as to require being viewed with Glaffes, I fhall not conceal them from the Reader.

Diffolve as much of the blueft and cleanof Vitriol in warm Water as it can poffibly fuftain. Put a very little Salt. Ammoniac in fine Powder upon the Glaifs Plate, to which add two or three Drops of the Vitriol Solution. When the Salt Ammoniac is diffolved, place in the Mixture upon the Glafs a fmall Brad filed bright, wet it all over with the Liquor, and fpread the Liquor round it, as in the foregoing Experiments: It will immediately attract the Copper in the Vitriol, and foon begin to fhoot out Branches, the Form of which, as the Microfcope will fhew, very much refembles Heath.-Sublimate inftead of Salt Ammonicc caufes a different Kind of Shootings.-If the Copper Solution be overcharged with Salt Ammoniac or Sublimate it will not. hoot at all, but turns yellowifh round the Nail. A few Trials will fettle the Proportion, which is according to the Quantity of Copper in the Vitriol. An exceeding fmall Drop of Spirit of Wine will raife a Fermentation with the Vitriol,

208 Of the Refulcitation of Plants:
but that being over before the Nail is applied, it makes the Shootings ftronger.

The firf Principle of Action in all there Experiments is the Attraction of Copper by Iron; but that only ferves to cover the Iron with Copper Particles, in the Manner before defcribed, pages 80 and 81 . The Branchings of every Sort are owing to the Agency of Salts; which Confideration may perhaps lead to Means of producing Vegetations from other Metals.
'Tis hoped the dwelling fo long on thofe Experiments may be excufed : as they are extremely pretty in themfelves, and feem to open a Way towards accounting for many of the moft curious Productions in Nature.

C H A P. LIV.

Of the Resuscitation of Plants.

THE Chemifts tell wonderful Things of the Refufcitation or Refurrection of Plants from their Afhes; and I make no Doubt extraordinary Configurations have been produced in very ftrong Solutions of vegetable Salts, by the Means of Precipitation and Attraction: but I cannot help believing that Imagination has been greatly indulged, when they talk of Branches, Leaves, and Flowers, exactly refembling thofe to which the Salts belong.

The

The famous Phylician Quercetanus tells a ftrange Story of a Polonian Doctor, who Thewed him a dozen Glaffes hermetically fealed, in each of which was a different Plant, as a Rofe in one, a Tulip in another, a Clove July-Elower in a third, Eic. When thefe Glaffes were firft brought to View, you faw nothing in them but a Heap of Alhes at the Bottom ; but on the Application of fome gentle Heat under any of them, there prefently arofe out of the Afles the Idea of the Flower and Stalks belonging to thofe Afhes; and it would froot up and fpread abroad to the due Height and Dimenfions of fuch a Flower, and had the perfect Colour, Shape, Magnitude, and all the other Accidents, as if it were really the Flower. But whenever the Heat was drawn from it, as the Glafs and the included Air and Mat-ter cooled by Degrees, fo would this Flower fink down by little and little, till it would bury itfelf in its Bed of Ahes; and thus it would do as often as a moderate Heat was applied or withdrawn. Kircleer is "faid to have done the fame Thing at Rome.

Dr. Cox gave an Account to the Royal Sor ciety (Pbilof. Tranf. No io8) "s that having "procured a large Quantity of Feriz Ahes, if from Fern burnt when between greeniand "dry, he extracted their Salt in the common «Manner with Water, and obtained feveral is Pounds of Salt, after evaporating the WaVoi. II.

210

 Of the Refufcitation of Plants."t ter; the greateft Part of which, being "s firft dried, he expofed to the Air, that "it might become an Oil per deliquium. " The Remainder of the Lixivium which "continued fluid, being filtered whilft " warm, was of a very red Colour, deeper " than florid Blood and moft Clarets, and " exceeding ponderous. The Colour thew" ed it abounded with fulphureous or oily "Parts, and the Weight that it was highly "faturated with the faline. This ftrong "Solution being put in a capacious Glafs, " in five or fix Weeks depofited a large "Quantity of Salt, at leaft two Inches thick, "s over the Bottom of the Veffel. The " loweft Part of the Salt was of a dark Co" lour, as if fome Dirt or Dregs were mixt " therewith, but the Surface next the Liquor "was exceeding white; and there fprung " out of the whole Mafs of Salt, at fmall "Diftances from each other, about forty " Branches, which (excepting the Colour) " did moft exactly refemble that Kind of
"Fern which is fingle like Polipody and not " branched, fending out feveral Leaves on " each Side from one Stem. They differed "s in Size, but were all alike in Figure, "s without the leaft Variation : only fome
" emitted more Leaves from the Stem than "s others; which is alfo ufual in the natural "Fern."

Of the Refufcitation of Plants.
 211

Dr. Cox likewife adds, " that mixing equal "Parts of Sal Ammoniac and Pot-Afhes, the " latter of which had a very ftrong ful"phureous Smell, yet feemed to abound " with Salt confiderably alkalized; the Mix"ture being put into a tall Glars Body, im"، mediately upon feeling the Heat a great "d deal of volatile Salt was fublimed, and in " the Glafs Head he obferved, to his Sur"prize, a Foreft in Perfpective of Firs, Pines, "E'c. fo admirably delincated, as not to be " excelled, if imitated, by the Pencil of the " greateft Mafter."
Having left a fmall Quantity of Compound Syrup of Balfam in a Phial, that was fet by and forgot, with only a Piece of Paper thrult into the Mouth of it inftead of a Cork; when it came to hand two or three Months after, I found all the watery Part evaporated and the Sugar cryftalized at Bottom: and, what furprized me very agreeably, the faline Particles of the Gums and Balfams, of which it was compofed, had fhot themfelves almoft intirelyr ound the Infide of the Glafs Phial, in the moft regular and pretty Configurations imaginable ; and remained fo for a long Time afterwards.

The Activity and Volatility of Salts are wonderful, and I make no Doubt many entertaining Experiments might eafily be made by Intermixtures of vegetable and other Salts, if any Body who has Leifure would P 2 inten-

212 Mifcellancous Obfervations on Salts, \&x. intentionally fet about it. Kircher fays, "if " you put into a wooden Tube, Tartar, " Quick-lime, Salt, and the Urine ofa Wine" Drinker, reduced into one Mafs, which " is to be hardened in the San and after-
" wards fet in a cold Cellar; from the above" mentioned Mafs, by the Help of Salt" petre, you will fee Flowers branch out. "And fuch is the Force of Nitre, that, if " in a Glafs kept clofe fhut, you pour the
"Juices of fome nitrous Herbs on the above
" Mafs, the Nitre contained within it be" ing pregnant with Spirit will force itfelf "through the very Pores of the Glafs."

C H A P. LV.

Mifcellaneous Obfervations on Salts, \&cc.

HAVING gone through the Courfe of my Experiments on faline Subftances, I propofe from thence to form a few Reflections.

As it has been plainly fhewn that the Particles of Salts, diffolved and floating in a Menifruum, will, by Precipitation, or an Evaporation of the Fluid, be brought together, and unite in Figures peculiar to their refpective Kinds, by fome certain Laiv of Nature (call we it Attraction, or what we pleafe:) it feems reafonable to believe, that thofe cryfaline, mincral, or inetallic fofil Bodies which have a comftant and regular

Mifcellaneous Obfervations on Salts, \&cc. 213

 Configuration, derive their Figures from the Intermixture and Operation of Salts of fome Sort or other. For that Salts abound every where in the Earth, either at Reft and locked up in Minerals and other Bodies; or in a State of Action, being diffolved and carried along in Water or fome other Fluid, is a Matter beyond Difpute. The finer Particles of fuch Salts being diffolved in and rifing roith the Particles of Water *, float likewife in our Atmofphere in great Abundance, where by Heat and Cold, by a greater or leffer Degree of Rarefaction, as well as by other Accidents, they at different Times are (in the Air) brought together in greater Quantity, or become more difperfed and diffipated: whence confiderable Changes and Alterations are produced, fuch as Freezing, Hail, Snow, Lightning, Thunder, © ${ }^{\circ}$ c. But I fhall confine my Obfervations to the Effects that are probably owing to faline Particles within the Bowels of the Earth or very near the Surface thereof.Since we are acquainted with no Diffolvents of Metals where Salts are not principally concerned, it is reafonable to fuppofe, that in the Bowels of the Earth, Salts may likewife, when diffolved themfelves, have a Power of diffolving metallic Subftances; and afterwards, on the withdraw-

[^31]214 Mifcellaneous Obfervations on Salts, \&c.
ing of the Fluid, of uniting with the metallic Particles, and bringing them together in certain Figures peculiar to fuch an Admixture, and more or lefs perfect according to the refpective Proportions of metallic, faline, and other Particles. Thofe curious Ramifications in the arborefcent filver Ore brought from $P a$ nama, which run through the Bed of Stone wherein it lies, may perhaps be owing to the Particles of that Metal having been diffolved by a vitriolic Menftruum, and carried along with it into the little Fiffures of the Stone; where as the Water evaporated, the Silver Particles were fhot out and difpofed by the vitriolic Salt, into Ramfications fo nearly refembling the Configurations of Vitriol. The Branchings of Copper and Iron (by fome imputed to a vegetative Principle) are probably produced in a like Manner; and the Reafon why Gold is feldom or never found thus branched, but always in little Lumps or Granulæ, may perhaps be, that the Salts which diffolve other Metals are unable to Separate the Particles of Gold.

Rock Salt, (which differs little or nothing from the Salt of Springs and of the Sea,) Vitriol and Alum, (of which, and alfo of Sulphor, the faline Acid, Chemifts tell us, is in all the fame) Nitre and Borax, are I think the only foffil or mineral Salts fpoken of by Writers ; for Salt Ammoniac can hardly be accounted fuch. But it is impoffible

Mijcellaneous Obbervations on Salts, \&xc. 215

 to fay what others befides thefe the Bowels of the Earth may contain, or how infinitely they may be compounded and diverffied. I fhall make no Difficulty to fuppofe the component Particles of Spars, Cryfals, and precious Stones have been Separated and floating in fome Fluid, and brought together in the Shapes we fee them by certain Laws of Attraction, which in like Circumftances are conftant and unalterable. And as uniting in regular Order, and forming Maffes of Figures uniform and conftant, are the diftinguifhing Properties of Salts, (as the foregoing Experiments (hew) the component Particles of Bodies thus formed muft originally have been Salts, notwithftanding the Bodies fo compofed are indiffolveable: nor is the prefent fixt Condition of fuch Particles, or the Hardnefs of fuch Bodies, any conclufive Objection ; for the making of Glals fhews, that Salts may be rendered fixt, hard, and indiffolveable. I therefore apprehend that all cryftaline Matter, or the Particles of Matter whereof Spar, Cryftals, and precious Stones are formed, is originally a Salt, according to my Meaning of the Word; and Linnaus is I prefume of fome fuch-like Opinion; fince in his Syfema Naturce he places all precious Stones, even the Diamond itfelf, in his Claffes of Salts.Doctor Woodward likewife, though he fpeaks not of this cryftaline Matter as a Sait,

$$
\mathrm{P}_{4} \text { imputes }
$$

216 Mijcellaneous Obfervations on Salts, \&cc.

 imputes it to the Properties that Salts have, when he fays, the flooting of any Metal proceeds generally, merely from Cryftal, combin. ing with it in the Concoction and Formation of the Mols. And again, Metalline Matter, when pure and fimple, never floots into an angulated Figure, nor is indeed capable of doing that. The Bodies incor:porated with Metals, and dijpoling thein to boot into angulated Figures, are either Sulphour (by which he mutt mean the Sal Acidum of Sulphur) or Cryfacl. "Iron concreting with Cryftal determines it to a rhomboidal Figure, Tin to a quadritateral Pyramid, Lead to a cubic Form. If Cryftal be pure it fhoots into a fix-fidecd pyramidal Figure, or into a Pyramid erected upon a Column, each with fix Sides and Angles." He moreover fuppofes, "the Bafis of all tranfparent Gems to be a cryftaline Matter different in Hardnefs, and coloured by metallic Mixtures : Lead imparts a yellow, Iin a black *, Copper a blue or green, Iron a purple, an amethyftine, and various Sorts of red. The Figures of all angular opake Foffils are owing to the like cryftaline Matter, but in them the metallic Matter fo much exceeds the cryfaline, as to render the Body opake + ."[^32]
Mifcellaneous Obfervations on Salts, \&c. 217

That the Shoots of Cryftals are formed in a Fluid ftrongly charged with cryftaline Matter, will readily I believe be granted, and likewife that their Formation is nearly in the fame Manner as the Formation of the Cryftals of diffolved Salts. But perhaps it may be inquired in what Time this Operation is brought about; and though that much depends on the Strength of the Solution, and the Evaporation of the watery Part of the Fluid, there mult certainly be a Crijis when the Cryftals begin to form; after which, little Time perhaps is required to bring them to Perfection: for, when the floating Particles come within the Sphere of each other's Attraction, they rufb togetber and unite, according to their refpective Figures, and that in a fhort Time; as is plain in freczing, and in artificial Cryftalization, which is brought about in the fame Way.

Great Difputes have arifen among Naturalifts concerning the Formation of Corals and Corallines *, under which Names Bodies of very different Contextures, Subitances and Figures, are I think too indifcriminately included; their Appearance indicating not only a Difference in Species, but even in Genus. Some infift on their being in general

[^33]the Work of little Animals, whilft others maintain that they are all Sea-Plants. There may be found perhaps of both thefe Kinds: but is there not a Third, I mean the fony Corals) whofe Production may be more akin to that of Minerals, and chiefly owing to the Operation of faline Particles incorporated with fony Matter?

The Rocks in the Sea on which there Corals are produced, are undoubtedly replete with minereal Salts, fome whereof near their Surface, being diffolved by the Sea Water, muft confequently faturate with their faline Particles the Water round them to a fmall Diftance, where blending with the * fony Matter with which Sea Water always abounds, little Mafes will be conftituted here and there and affixed to the Rocks. Such adhering Mafies may be termed Roots: which Roots attrading the faline and fony Particles, according to certain Laws in Nature,

[^34] page 129.
may produce brancbed or otber Figures, and increafe gradually by an Appofition of Particles; becoming thicker near the Buttom where the faline Matter is more abounding, but tapering or diminifbing towards the Extremities, where the mineral Salts mut be fewer, in proportion to their Diftance from the Rock whence they originally proceed. And the different Proportions of mineral faline Particles, of the flony or other Matter wherewith they are blended, and of marine Salt, which muft have a confiderable Share in fuch Formations, may occafion all the Variety we fee. Nor does it feem more difficult to imagine that the radiated, ftarry, or cellular Figures along the Sides of thefe Corals, or at the Extremities of their Branches, may derive their Production from Salts incorporated with fony Matter, than that the curious Delineations and Appearances of minute Shrubs and Moffes on Slates, Stones*, Ecc. are owing to the Sboots of Salts intermixt with mineral Particles: and yet there are generally allowed to be the Work of mineral Steams or Exhalations; by which muft, I think, be meant the fineft Particles

[^35]of fome Metal or Mineral incorporated with and brought into Action by a volatile penetrating Acid, which carrying them along with it into the Fiffures at leaft, if not into the folid Subftance of fuch Stones or Slates, there determines them to fhoot into thefe elegant Brancbings; after the fame Manner, and frequently in the fame Figures, as the Particles of Mercury, Copper, \&c. are difpofed and brought together by the Salts in Aqua Fortis, of which an Account is before given, page 196.

Such as believe thefe Corals to be the Work of Infects, ground their Opinion, (againft many feeming Appearances to the contrary,) on the fole Suppofition that each of their farry Cells or Hollows is inhabited by an Infect, who therefore was the Maker of it. I very readily believe Infects are frequently found therein : for the Works of God are all fubfervient to one another, fo as to compofe a perfect Whole; and as on the Earth mort Kinds of Plants afford an Habitation for Infects, it would be very ftrange if amongtt the innumerable Animals in the great Sea, fome Species or other were not intended to dwell in thefe little Cells. But without objecting to the Difproportion between the Work and the Workmen, and that Animals fo exquifitely tender and delicate fhould yet be able to bring together and fafhion fuch large and heavy Maffes of Stone-like Matter, fince Na-
ture is every where wonderful; I fhall only remark, that were all thefe Cells filled with Animals, and efpecially the very large Cells in fome Corals, to which the Animals muft be fuppofed proportionably large, it could fcarce have happened but that every Fihher for Coral, or whoever had feen a Branch of it in the Sea, mult likewife have feen there Animals. Befides, at different Times, there have been fome diligent Obfervers of Coral, whofe Notice thefe Animals have efcaped: which renders it probable, that though fome Cells may be inhabited, the Generality of them are not. And as to forming Conclufions from the minute Corallines, whole Subftance and Figure bear not the leaft Refemblance to thefe, and infifting that becaufe the little Veffels or Cafes found on them are the Nefts and the Works of Infects, therefore Infects muft have been the Fabricators of all the Corals; I fay, to conclude thus, is fomewhat over hafty and unphilofophical *.

> Though,

* The Animals fuppofed to have formed Corals, or to have made tbeir Neffs upon then!, are, for want of knowing their proper and difinguifhing Characters, called at prefent by the general Name of Polypes; though perhaps tbeir Species, Size, and Figure may be as different as the Corals themfelves are: but thefe Animals are defcribed by all who fpeak of them, as having Bodies fo extremely tender that a very llight Touch will lacerate or diforder them. They are alfo reprefented as fixt to one Spot, with little other Motion than that of extersding their Arms or Bodies out of their Cells, or contrafing themfelves and retiring therein at the Apprehenfion of Danger. Creatures thus circumitanced feem very little capable of col-

Though, living far from the Sea, I have never been able to examine Corallines juft taken from thence, I doubt not the Veracity of thofe who fay, that on placing them conveniently in Sea Water, they have by Glaffes difcovered minute Polypes in every one of the little Veffels: but thefe Veffels or Cafes are of a membranaceous Texture, tran\{parent, and in moft Particulars intirely different from the fony Corals; and even allowing them to be the Work and Nefts of Infects, I am not yet, I muft confefs, intirely convinced that the whole Coralline is fo too; for in many of them a tough Stem, feemingly of like Confiftence with that of other SeaProductions acknowledged to be Plants, rifes from a Root or what appears to be fo, and branches out in fuch a Manner, that I believe the moft accurate Examiner, void of any Hypothefis, would declare it to be vegeta-ble.-In fhort, there are wonderful Mixtures in the Sea; Stones, Shells, and Plants,
lecting and carrying a foony Matter, and raifing Edifices therewith; and efpecially in fuch large Quantity, that comparing the Smalluefs of the Cells wherein thefe Creatures are fuppofed to dwell, with the Bulk, Solidity, and Weight of the Roots and Branches of many of the Stony Corals, the greateft Part of it appears quite unneceffary. This is direaly contrary to the Oeconomy of Nature (frugal though fuficient) in the Shelly Cafes of the feveral Species of Vermiculi, in the Tubuli marini, the Pipe Corals, and the Habitations made by other fmall Infects; all which, like the Honey-comb, are framed of as little Matter as poffible, thin, light and roomy, and appear to be what they are. I hall only add, againft the fuppoling all Corals to be made by Infects, that fome Sorts have no Cells either on their Stems or Branches.

Mifcelluneous Obfervations on Salts, \&xc. 223

 are frequently incrufted with the ftony Matter that gives the Subfance to Coral; and I make no Doubt that Millions of minute Animals find or build them Habitations both on the Corals and the Sea-Plants.But to leave a Digreffion, which is not perhaps quite foreign to my Subject, and wherein I would not be thought to affirm any Thing, but only to point out how the Pony Corals, which are certainly formed by an Appofition of Particles fomehow or other brought together, (having no Fibres or Veffels to convey Juices for Nutrition or Increafe; and therefore being no Vegetables) may poffibly be produced with all their beautiful Regularity and Variety, even though on a ftricter Enquiry they hould not appear to be made by Infects *.

The Salts of Minerals and Vegetables floating in the Air produce a thoufand pretty Appearances, when brought together and concreted by Froft. I have feen, in Winter

[^36]
224 Mifcellaneous Obfervations on Salts, \&cc.

Time, formed in this Way, upon Windows, on wooden Pales, and fometimes on the Webs of Spiders, very elegant Reprefentations in Miniature of Landicapes, with Groves of Trees, and a feeming Variety of Shrubs and Herbs: but the moft charming of this Kind I ever beheld ufed to be on the Glafs Windows of a neceffary Houfe in the Country, owing I fuppofe to the additional Intermixture of animal Salts.

Copper Plates are very expenfive, and Defcriptions without them hardly intelligible, or I fhould have added many curious Obfervations made on Mixtures of animal, vegetable, and mineral Salts (fome of which are in very few * Hands) as alfo on the Solutions of different Metals and Minerals by acid Spirits; but thofe who know any thing of Chemifry, or will beftow a little Time in the Study of Nature, will, I am perfuaded, in Confequence of the Hints here given, fuggeft to themfelves numberlefs Experiments, which if purfued may prove both profitable and pleafant.
In fhort, Salts are the active Principles whereby Nature performs Wonders; as is

* Particularly the Matron of Egypt, brought thence and given me by Dr. Poock; an alkaline Salt fermenting violently with Vinegar (whofe Shootings ate very fingular) from Sindy in the Inland Parts of Afa, given me by Sir Hans Sloare; the genuine Salis of mineral Springs in different Parts of the World; and many other foline Subfances either in their natural State, or by human Art extracted or compounded.

Mifcellaneous Obfervations on Salts, \&c. 225 fufficiently evident from that Variety of Figures they produce, by combination with one another, or when incorporated with Subftances of other Kinds. But this has given Occafion for fome to object, that the Figures of Salts cannot be determined, fince the fame Acid diffolving different Bodies affiumes different Shapes. Spirit of Nitre, fay they, for Inftance, having diffolved Copper, hoots into hexagonal Cryftals; having diffolved Iron, into irregular Squares; and forms triangular thin Cryftals after diffolving Silver. But waving all Difpute, which I fhall ever carefully avoid, does not this feem a Proof rather of their Conftancy than their Uncertainty? for the Shootings of pure Nitre examined alone are conftantly the fame; and are not the Cryftals produced in Spirit of Nitre when Copper, Iron, or Silver has been diffolved therein, always conitant to each refpective Metal, though different from one another? What greater Conftancy than this can pofibly be expected ? and would it not occafion much greater Uncertainty and Confufion were mixt and unmixt Subftances to put on the fame Forms?-It is likewife objected, that their Figures vary if they are differently prepared: And this indeed is true. But as with the fame Mixtures or Management they are found to produce the fame Cryftals and Configurations, this Objection has no Force; unlefs it be to prove, Yoz. II,

226 Mifcellaneous Obfervations on Salts, \&xc. that the Figures they produce are difinaruifloing and infallible Marks of their different Degrecs of Perfection, and that the MicrusCope may be of the utmoft Service to dif cover Knavery and Impofition.

$$
\text { End of } P A R T \text { the Firf. }
$$

EMPLOYMENT

FOR THE

MICROSCOPE:

PART II.

CONTAINING
An Account of various Animalcules never before defcribed; and of many other Microjcopical Difcoveries.
with
OBSERVATIONS and REMARIS.
ALSo
A Defoription of the Microfcope ufed in the fe Experiments: and of a new Mi crometer Serving to thew the comparative Size of magnified Objects.

Together with
Inflructions for eafily printing off any Medal or Coin.

Qa.

[229]

INTRODUCTION.

THOUGH every Thing is alike eafy to an Infinite and Almighty Being, yet, according to human Comprehenfion, it appears extremely wonderful, that we find, almof without Exception, in thefe Specks of Life whofe Minutenefs renders them almoft imperceptible to the Eye of Man, a greater Number of Members to be put in Motion, more Wheels and Pullies to be kept going, a greater Variety of Machinery, an Apparatus more complex and curious, a Plan feemingly of deeper Contrivance ; in fhort, more Elegance and Workmanfbip (if the Term may be excufed) in the Compofition, more Beauty and Ornament in the Finifhing, than are feen in the enormous Bulk of the Elephant, the Crocodile, and the Whale; compared with which, one would think them no lefs the Effect of a more exquifite and fupefior Art, than the Movements of a Watch appear to be, on Comparifon with the Wheels of a Coach or Waggon.

There

23° INTRODUCTION.

Thefe Truths need no Proof to fuch as are acquainted with the Microscope, however incredible they may feem to others: that valuable Infrument will fully convince us, that All the Works of the Creator well deferve our moft diligent Attention ; that Perfection appears cvery where; that Minutenefs is no Mark of Meannefs; and that nothing is fo little or fo low but that it can richly repay our Enquiries. Hereby we are likewife taught, that an Atom to Ommipotence is as a World, and a World but as an Atom; in the fame Nanner as to Eternity one Day is as a thoufand Years, and a thoufand Years but as one Day. Every Species of thefe Animalcules may alfo ufefully ferve to correct our Pride, and prove how inadequate our Notions are to the real Nature of Things: by making us fenfible how little of the larger or fmaller Part of the Creation could pofitbly be made for us; who are furnithed with Organs capable of difcerning to a certain Degree only of the great or little, all beyond which is as much unknown, as far beyond the Reach of our Conception, as if it had never been.

An Examination of the Variety and Beauty of the Works of Nature mult afford the moft reafonable Satisfaction to a contemplative Mind, as they ftrongly evince the Agency and Omnipotence of the Deity. Proofs of fome all-powerful, wife, and good Being

INTRODUCTION. 23I

are indeed deducible from every thing around us, but the extremely Great and the extremely Small feem to fumifh the clearef and molt convincing ; and perhaps, if duly confidered, the Fabrick of a World, and the Fabrick of a Mite, may be found equally ftriking and conclufive.

Glasses difcover to us numberlefs Kinds of living Creatures, whofe Minutenefs renders them abfolutely undifcernable by our naked Eyes, and God alone knows how many thoufand Kinds there may be, ftill gradually decreafing in Size, which it is impofible for us to fee by any Help whatever; to all thefe, however, we muft believe, from reafoning on what we know, that Providence has not only appointed the moft wife Means for Propagation, Prefervation, and Happinefs, but has moreover adorned them with Beauty equal at leaft to any thing our Eyes have ever feen.

The fmalleft living Creatures our Inftruments can fhew are thofe that inhabit the Waters: for though poffibly Animalcules no lefs minute may fly in the Air, or creep upon the Earth, it is fcarce poffible to bring fuch to our Examination; but Water being tranfparent, and confining the Creatures in it, we are able, by applying a Drop of it to our Glafies, to difcover (to a certain Degree of Smallnefs) all that it contains. My Attention has been therefore applied more particular-

232 I NTRODUCTION.

ly to infpect the Waters; in doing which I have been kindly affifted by fome ingenious Friends ; and the following Plates and Sheets exhibit the Figures and Dejcriptions of fuch of the minute Inhabitants thereof as have fallen in my Way, and feemed to me the moft curious and extraordinary. And as Names are of the utmof Service to make People underftand one another, I hope to be indulged the Liberty of giving fuch to thefe hitherto unnoriced Animalcules, as correfoond in fome Manner to their Appearances; even though I may not always have chofen the moft proper.

E M P L O Y MENT

FORTHE

Microscope, \&c.

P A R T II.

C H A P. I.

 Of the Hair-like Infect.THE wonderful Animalcule I am going to defcribe, was I believe firft taken Notice of by my curious Friend Mr. Williann Arderon, of the City of Norwich, before fpoken of in this Treatife, who kindly fent me an Account thereof, together with many thoufands of the Creatures themfelves; which came to me alive, in a Veffel of the fame Water they were found in, and lived with me feveral Weeks : whereby I had frequent Opportunities of being convinced how carefully he had obferved them, and likewife was enabled to relate many Particulars from my own Knowledge. -

This little Animal (the Form whereof may be feen Plate XX. N ${ }^{0}$ I.) is extremely flender, and not uncommonly one hundred and fifty times longer than broad. Its Relemblance to an Hair has induced us to call it the Hair-like Infect. The Body, or Middle Part, which is nearly ftrait, appears in fome compofed of fuch parallel Rings as the Windpipe of Land Animals confift of, but feems in others fcaled, or rather made up of Rings that obliquely crofs each other. This Difference may be feen in the two Figures F, G. Its two Ends are bent, or hooked, pretty nearly in the fame Degree, but in a Direction contrary to each other ; and, as no Eyes can be difcerned, 'tis difficult to judge which is the Head or Tail.

Its progreflive Motion differs from that of all Animals befides hitherto defcribed, for notwithftanding the Body is compofed of many Rings and Joints, it feems unable to bend at all, or move directly forwards: but when it is inclinable to change its Quarters, it can move from Right to Left, or Left to Right, and proceed at the fame Time backwards or forwards obliquely. And this it performs, by turning one End about, the Quarter of a Circle, as the Arc ab hews; then it does the fame with the other End, and fo alternatcly: whereby its Progreffion is in a diagonal Line, or from Corner to Corner; as whoever will take the Trouble
to Chift the Points of a Pair of Compaffes in that Manner may immediately be fatisfied.

All its Motions are extremely flow, and require much Patience and Attention in the Obferver. It has neither Feet, nor Fins, nor Hairs, but appears perfectly fmooth and tranfparent, with the Head bending one Way and the Tail another, fo as to be like a long Italian f: nor is any internal Motion, or particularly opake Part to be perceived, which may determine one to fuppofe it the Stomach or other of the Inteftines.

Thefe Creatures are fo fmall that Millions of Millions might be contained in an Inch Square. When viewed fingly, or feparated from one another, they are exceedingly tranfparent, and of a lovely green; but like all other tranfparent Bodies, when Numbers of them are brought together they become opake, and lofe their green Colour, in proportion as the Quantity increafes, till at laft they appear intirely black.

They were firf difcovered in a Ditch at Norwich, one End whereof communicates with the River there, and the other End with a fecond Ditch, into which feveral Kennels empty themfelves from different Parts of the City. The Length of this Ditch is at leaft an hundred Yards, and its Breadth nine: the Bottom, for more than a Foot in Depth, is covered with a blackifn green Subftance, in Appearance like a Mud, made up wholly
wholly of thefe and other Infects, intermixed with different Sediments from the Water. He affures me, he has conftantly found much the greater Part of this black Matter to be really Infects: but were they only one half or a quarter Part thereof, what Numbers beyond all Conception muft this Ditch contain!

It was Accident (whereto more Difcoveries have perhaps been owing than to Defign) that fortunately prefented thefe Animalcules to Obfervation.-My Friend having got fome Water from this Ditch, with Intent to examine by the Microfcope other Infects he had taken Notice of therein, found before his Eyes a great Abundance of flender Hairlike Fibres, which he imagined to be the Stems or Roots of fome extremely fmall Water Plants, from their appearing to him without any Life or Motion, tho' he wondered much at theit Uniformity of Figure. Being however not fatisfied with a fingle View, but continuing them under the Magnifier, and looking at them now and then, he perceived that many of thofe feeming Hairs which be had feen before feparated from one another as at d, in N° II. were flowly drawing themfelves together in Companies as at e in the fame Number.-This gave him the firt Notion of their being living Creatures, and fet him upon watching them fo marrowly, that he was quickly convinced,
vinced, not only of their having Life, but likewife of their being able to change their Situation, either from Right to Left, or Left to Right, backwards, or forwards, at Pleafure, in the Manner juft now defcribed.

Being thus far fatisfied, he applied himfelf very diligently to examine the Structure, Motions, and other Properties of thefe minute Creatures; and found, by viewing them feveral Times, and through different Magnifiers, that altho' they are moft commonly compofed of little Ringlets, whofe Joinings appear like parallel tranfverfe Lines as at F, N^{\bullet} I. many however were feen amongft them, in which great Numbers of minute Rings feemed to crofs one another obliqueły, and reprefented Scales, (vid. N° I. G.) but whether thefe are different Species or not muft fill remain a Doubt.

After putting a large Spoonful of the beforementioned black or rather dark green thick Matter into a Glafs Jar, he filled it up with Water, very gently, as high as $h, \mathrm{~N}^{\circ}$ III. then leaving the faid Matter to fettle and lie quietly at the Bottom of the Veffel, its whole Appearance prefently afterwards is fhewn in the fame Glafs at i.

The next Day, when he came to examine what had happened amongtt thefe Myriads of little Animals, he found that a Multitude of them had, as it were by Agreement, placed themfelyes on the Side of the Jar, and ap-
peared marching upwards in Rows, after the Manner reprefented $\mathrm{N}^{\bullet} \mathrm{IV} . \%$ and that fome of them had travelled to the Diftance of three or four Inches, which confidering the Slownefs of their Motion, and their Method of moving forwards, mut be looked upon as a long Journey.

In about two Days great Numbers had travelled up the Side of the Jar, to above the Surface of the Water, as at $k \mathrm{~N}^{\circ} I V$: when after being expofed to the Aii for a little while, their fine green Colour became changed into a moft beautiful Sky-blue.

This fine dark green Niatter or Congeries of Animalcules, is fo nearly equal to the fpecific Gravity of Water, that at firft putting in, it either fioats at Top, or continues at the Bottom, or in the Middle of the Jar, juit as Accident has difpofed it. But if Part of thofe that are fivimming at the Top of the Water have an Inclination to go downwards, they form themfelves into a Sort of Line or Rope, which defcends extremely flow, till they arrive as low as they intend: And they are able to fufpend themfelves in the Water where they pleafe, and as long as they have a Mind. Their Method of doing this is fnewn $\mathrm{N}^{\circ} V . c c c$. Thofe however who happen to be near the Side of the Jar move themfelves down thereon, and that commonly in a winding fcrew-like Manner, as $n n \mathrm{~N}^{\circ} \mathrm{V}$. is intended to reprefent. -Their

Motion upwards in the like Order has been defcribed atready, No IV . 1.

A fmall Quantity of this Matter having one Day been put into a Jar of Water, it fo happened that one Part thereof went down immediately to the Bottom, whilft the other Part continued floating upon the Top. All Things remained a good while in this Condition, until at laft each of thefe Swarms of Animalcules grew weary of its Situation, and had a Mind to change its Quarters. Both Armies, in fhort, began their March at the fame Time againtt the Side of the Jar; and as one proceeded upwards, and the other downwards, after fome Hours, they were near meeting about the Mid-Way; as the Route each of them appeared to take, foon after they began to move, made it very eafy to forefee they would. The Defire of knowing in what Manner they would behave on this Occafion, engaged the Obferver to watch them with a careful Eye, and as they approached ftill nearer, he beheld, to his great Surprize, the Army that was marching upwards, open to the Right and Left, and leave a convenient Space for the Army that was marching downwards to pafs between its Wings. Thus without Confufion or Intermixture each held on its Way: the Army that was going upwards marching in two Columns to the Top, and the other proceeding with great Regularity and Order in

240 Of the Hair-like Infect.
one Column to the Bottom. No VI. is a Reprefentation of this amufing Accident, which ferves to thew, that however mean or contemptible thefe Creatures may appear to us, the Power that created them has not left them deftitute of Sagacity, to affociate together, and act unanimounly for the Benefit of the Community ; both thefe Armies marching as regularly as if under the Direction of wife Leaders.

When thefe Animalcules are taken from the Ditch, and any other Water poured upon them, it is difficult to make them live twenty-four Hours; but when kept in fome of the fame Ditch-Water, they may be preferved in good Condition for feveral Months. Though they never are fo vigorous, nor fhew their Way of moving from Place to Place fo plainly, as when newly taken up.-Their Kind of Motion, as before defcribed, makes it evident, that if they move along the Side of a cylindrical Glass Jar, either upwards or downwards, it muft be in a Spiral Line; and fuch it is always found to be.

It is not yet difcovered whether their Food be Infects exceffively minute, or Particles of Matter floating in the Water; neither do we know any thing concerning the Manner of their being propagated. They have as yet heen taken Notice of only in this Ditch, but 'tis reafonable to believe that other Places of the
the like Kind, will, upon Examination, be found to produce them alfo, and even in great Abundance.

C H A P. II.

Of the OAT-ANIMAL.

IN the fame Ditch-water from Norwich came likewife great Numbers of the little Creatures, whofe feveral Appearances, when examined by the Microfcope, are fhewn Plate X. No vii.

My curious Friend pointed it out to my Obfervation by the Name of the Oat-Animal ; and as, at firft View, it much refembles a Grain of that Sort, I thall here defrribe it under the fame Name.

This Creature is fo very fmall, that no true Judgment can be made of it, unlefs. it be looked at through the greatef Magnifier, not even then without confiderable Attention. I commonly found two or three of them in a Drop of the Sediment, amongit Multitudes of the Hair-like Infect, lying at the Bottom of the Water wherewith the fame Sediment was diluted, upon the Plate of Glafs, without any vifible Motion or Appearance of Life : being inclofed in a Bivalve-fhell, which the Animal can open or fhut as it is inclined; but which it Vol. II.

R
conftantly fhuts upon being difturbed, nor opens again until after having been quiet for fome Time. Its Appearance when fhut is pictured at fig. I.

The Shell is fo exquifitely thin, and confequently fo very tranfparent, as to be traced out, when fhut, only by a faint Line on the Back, where the Cardo or Hinge makes fome additional Thicknefs; but when open, the Edges of both its Sides may be diftinguifhed plainly. The two Ends of the Shell can open, whilft the middle Part remains clofed, and in that Condition it is like the Pbolas and fome Species of the Chamn; but differs from them, in being able to fhut both Ends and alter the Fi gure of its Shell, which they cannot do. This probably is performed by Means of certain Articulations in the Shell, near its Extremitics, which are too fine to be difcerned. When thefe Ends are open, the Creature frequently thrufts out, at each, a cylindrical flefhy Part, (as at fic. 2.) which naly be fuppofed the Head and Tail; but their Minutenefs renders it hardly poffible to difcover any Difference between them. In this Pofture it is probable the Creature feeds, on that Provifion the Water brings; though it depends not wholly on fuch Accident, for it can change its Place by Jerks, or Leaps, which, it makes by the Action of fome ftrong Mufcles in the two protruded Parts,

Parts, whofe Spring throws it to the Diftance at leaft of its own Shell's Length every Time they are exerted. Thefe Leaps however have long Intervals between, and are never made till the Animal is perfectly undif turbed.

Both the Shell and Body are ufually fo tranfparent, that when the Shell is clofed nothing can be perceived but a Sort of Shade within it: but, now and then, I have feen the Body, plainly, through the Shell, in Shape as at fig. 3.

Several of them have a Couple of very dark round Spots, one whereof is feemingly placed within each Side the Shell, as in fig. 4. There I imagined to be compact Ligaments, ferving to open and fhut the Shell, and correfpondent to thofe that Oyfters, Mufcles, Scallops, Eic. are furnifhed with for the like Purpofe. But when I obferved others of them, having three, four, or five of the fame round Spots, I began to think myfelf miftaken; and fhould rather fuppofe them concreted Bodies, fimilar to the Pearls bred in feveral kinds of Shell-fifh, did not the Regularity of their Pofition render this likewife a little improbable.

One, having five Spots, with its Shell gaping the whole Length, and both Ends thereof fully extended in a frait Line, very different from what precede, is exR_{2} hibited

244

 Of the Oat-Alimal.hibited fig. 5. - In this Condition, which is not uncommon, it much refembles a Grain of Oats.

I muft not omit to mention another Variety amongft thefe Crcalures, which the fig. 6,7 , and 8 , are intended to explain. Here we fee a Couple of tranfverfe Lines, forming a Kind of Zone acrofs the Middle Part of the Shell, and feeming to feparate the two Ends thercof.

Fig. 6 and 8 have the two round opake Spots before defcribed.

Fig. 6 and 7 thew the Cardo of the Shell, but the fame is not feen in fig. 8 .
'Tis difficult to determine whether thefe are another Species, or only fome of the fame Sort of Animals in a different State or Condition. I much fufpect they may be about cafting their Shells, or perhaps diftempered, or even dead; for I have never feen any of them open their Shclls, or make the leaft Motion, though I have fometimes kept my Eyc over them for above a Quarter of an Hour.

C H A P. III.

Eels in Pafte viviparous.
THE Anguilla, or little Eel-like Animalcules, which are frequently fo numerous in four Pafte that the whole Surface
of it appears alive, and are feemingly of the fame Kind with thofe fometimes found in Vinegar, were fome of the firft minute Creatures the Microfcope was made ufe of to examine, and are fill the moft common living Objects it is employed about; I hould not therefore, after their having been fo long known, and fo often defcribed, have introduced them here, had not a very pretty Difcovery made a few Years ago, by Mr. Fames Sherwood, an ingenious young Surgeon, rendered them the Subject of a curious and entertaining Experiment.

Separating one of thefe fimall Eels from a Number of others, in order to examine it by the Microfcope, and wounding it accidentally in the Belly, he took Notice that a long flender Tube, doubled like an Inteftine, proceeded from the Wound: of which informing Mr. Needham, it excited their Curiofity to cut in two another Eel, near its Middle : when they difcovered a Number of living young ones, each inclofed in its proper Membrane, iffuing from what now plainly fhewed itfelf to be the Uterus. This induced him to make farther Trials, and finding ufually the fame Appearance, he thought proper to communicate his Obfervations to his Friends, and afterwards to the Royal Society *.

- Philof. Tranf. $\mathrm{N}^{\circ} 478$.

R 3
I firf

I firft faw the Experiment with Mr. Shercoood, and having fince made it Abundance of Times myfelf, am qualified to direct thofe who may defire to be fatiffied, how to perform it themfelves, without any, great Difficulty. - Having taken up a very fmall Quantity of the Pafle where thefe Eels abound, on the Point of a Pin, or with a flarpened Quill, lay it on a Slip of Glafs ; and diluting it well with Water, many of them will become vifible to the naked E.ye: then with the Nib of a Pen cut to a very fine Point, and fhaved fo thin as to be extremely pliable, fingle out one of the largert Eels, and infinuating the Point of the Pen underneath it, remove it into a very fmall Drop of Water, which you inuft have ready prepared on another Slip of Glafs. When thus confined, it may eafily be cut afunder, tranfverfely, by the Help of a good Eye and fteady Hand, with a Lancet or fharp Penknife ; or if the Eye is deficient, a Hand-Magnifier will enable almoft any body to perform the Operation. As foon as the Parts are feparated, apply your Object to the Microfcope, and if the Divifion has been made about the Middle of the Animal, feveral oval Bodies of different Sizes will be feen to iffue forth. Thefe are young Anguilla, of different Degrees of Maturity, each whereof is coiled up and included
included in its proper Membrane, which is of fo exquilite a Finenefs as to be farce difcernable by the greatert Magnifier, while it inclofes the Embrio Animal. The largert and moft forward break immediately through this delicate Integument, unfold themfelves; and wriggle about in the Water nimbly: others get out, uncoil, and move about more flowly; and the leaf mature continue intirely without Motion. The U_{-} terus, or Veffel that contains all thefe oval Bodies, is compofed of many Annulæ or Ringlets, not unlike the Afpera Arteria of Land Animals, and it feems to be conliderably elatic; for as foon as the Operation is performed, the oval Bodies are thruft out with fome Degree of Violence by the fpringing back or Action of this Bowel. An hundred and upwards of the young ones have been feen to iffue from one fingle ${ }^{\text {bel }}$, whereby the prodigious Increafe of thein may be accounted for; as probably feveral fuch numerous Generations are produced in a fhort Time. Hereby we alfo learn that thefe Creatures are not only like Eels in Shape, but are likewife viviparous as Eels are generally fuppofed to be.

I fcarce know a more entertaining Experiment ; and you'll very feldom be difappointed, for they feem like Earth-weornis to be all prolific, and unlefs by Accident

248 Eels in Pafte viviparous.
you cut one that has brought forth all its Young before, or make your Trials when the Parte has been kept a very long Time, (in which Cafe I have found them fometimes unfruitful,) you'll not fail of being. diverted after the Manner above deferibed.

One of the Anguilla, greatly magnified, and through the Body of which, before cutting, faint Traces of the young ones may be difcerned, is fhewn, N^{o} VIII. Plate X.

The fame, after being cut, with young ones iffuing from it, and the Uterus as it ufually appears, is reprefented in a Drop of Water, $\mathrm{N}^{\circ} \mathrm{IX}$.

This Difcovery is of more Confequence than without due Confideration it may feem to be; for as thefe Animalcules are plainly viviparous, and bring forth living and perfect young ones in their Eel-like Form, it is highly improbable that they ever become Flies, or undergo any other Change; fince no Animal has been yet known to put on a new Shape after it has produced its Young, whether in the Egg or otherwife. Therefore if thefe Anguillae never change to Flies, or lay Eggs, which this Experiment renders it very unlikely they fhould ever do, they can neither convey themfelves to any Diftance from the Poffe wherein they firt appear, nor be propagated by Eggs floating in the Air. The Queftion

Eels in Pafte viviparous.

Queftion then will be, by what Means they get into the Pafte at all: for fuppofing it poflible they might have been in the \mathbf{W} heat, and have efcaped unhurt through the feveral Operations of grinding the Corn, fifting it, $\mathrm{G}^{2} \mathrm{c}$. it is fearcely credible (in whatever Condition they might remain in the Flour) that they fhould be able to endure boiling, without which, and that too for a confiderable Time, no good Pafte can be made.

For my own Part, I muft acknowledge, that before this Difcovery I was ftrongly of Opinion that thefe Eels change into Flies; as many Kinds of Worms found in Waters are well known to do, and in that State depofit their Eggs in whatever Places they find a proper Neft and Provifion for their future Offspring; and this my Opinion I thought confirmed, by fometimes obferving very minute Flies, of a Size agreeable to fuch a Suppofition, hovering about the Glaffes where Pafte with Eels was kept. But as bringing forth living young ones, in their Eel-like State, is a Fact beyond all Doubt, I muft believe the Flies I faw about the Pafte are Infects of fome other Kind, and have no Relation to thefe Eels; unlefs we could imagine them to have a two-fold Method of Generation ; that is, to be both viviparous and oviparous, and to propagate both in the Eel and in the Fly State; which is too extraordinary

250 Eels in bligbted Wheat.
traordinary a Particularity to be admitted without the Atrongeft Proof *.

Thefe Difficulties muft be left to future Enquiry ; and I hove the Curious will endeavour to folve them by careful Experiments and Obfervations.

C H A P. IV.

Eels in blighted Wheat.

THE Difcovery of a certain Kind of Anduilla, or Animalcules refembling Eels, in blighted Wheat, was made accidentally by my very ingenious Friend Mr. Turberville Needbam, in the Summer of the Year 1743, in the Manner defcribed by himfelf in his curious Book of New Microfcopical Difcoveries + .

Thefe Animalcules are not ufually lodged in fuch blighted Grains of Wheat as are covered externally with a Soot-like Duft,

- Mentrelius publifined Obfervations made on the Procels of the Transformation of Eels in Vinegar, which, he tells the World, he faw iffue in Flies; which Flies did afterwards lay their Eggs in the Vinegar, Eic. And he has given Drawings of the faid Flies with his own Hands. On the contrary, D. Marcus Antonius Cellius affirmed to the Phyfico-mathematical Society at Rome, Anno 1688, that with very good Microfcopes of his own making he found the Eels in Vinegar to be viviparous.
+ Vid. New Microfopical Difcoveries by Mr. Needbam, p. 85 .
(whore Infide is likewife frequently converted into a black Powder:) but Abundance of Ears may be obferved in fome Fields of Corn, having Grains that appear blackifh, as if forched; and fuch when opened are found to contain a foft whiste Subfance, that attentively examined feems to be nothing elfe but a Congeries of Threads, or Fibres, lying as clofe as poffible to each other in a parallei Direction, and much refembling the unripe Down of fome Thiftles, on cutting open the Flower-Heads before they begin to blow. This fibrous Matter difcovers not the leaft Sign of Life or Motion unlefs Water be applied to it; but immediately on wetting (provided the Grains of Wheat are newly gathered) the fuppofed Fibres feparate, and prove themfelves to be living Creatures, by Motions that at firf are very languid, but gradually become more vigorous, twifting or wriggling themfelves fomewhat in the Manner of the Eels in Pafte, but always much flower than they, and with a great deal lefs Regularity; for in them the Head and Tail are conftantly moving, contrarywife, and alternately, with the fame Kind of bending or Undulation in the Bodies of them all; whereas the Animalcules we are now defuribing have no Uniformity in their Motion, but bend their two Extremities fometimes differently, and fometimes in the fame Direction.

If the Grains of Wheat are grown dry by keeping, and you cut them open in that Condition, the fibrous Matter is very diftinguifhable, and on putting Water to it will feparate with great Readinefs, and feem like fine Tubes or Threads tapering at both Ends : but not the leaft Motion or Symptom of Life will be perceived till they have been in Water for feveral Hours; nay, frequently they will never revive or come to move at all. But if the fame Grains be fteeped in Water for fome Hours, or buried for three or four Days in Earth, till they are fully faturated with Moifture, and then opened with a Penknife, on taking out a fmall Portion of the Wbite Matter carefully, and fpreading it thin upon a Slip of Glafs, the Animalcules may be feen bundled together, and extended longitudinally, but without Motion; and though upon the Application of Water, they will not revive fo foon as thofe taken from frefh Grains, whofe Moifture has never been exhaled; yet, after abiding an Hour or two in Water, I have conttantly found them alive and vigorous; and that, notwithftanding the Grains have been kept in a dry Condition even for fome Years; of which I have a remarkable Inftance now before me.

In the Month of Auguft 1743, a fmall parcel of blighted Wheat was fent by Mr. Needlom to Martin Folkes, Efq; Prefident of
the Royal Society, (with an Account of his then new Difcovery:) which Parcel the Prefident was pleafed to give me, defiring I would examine it carefully. In order fo to do, I cut open fome of the Grains that were become dry, took out the fibrous Matter, and applied Water to it on a Slip of Glafs; but could difcern no other Motion than a Separation of the Fibres or Threads; which Separation I imputed wholly to an Elafticity in the Fibres; and perceiving no Token of Life, after watching them with due Care, and repeating the Experiment till I was weary, an Account thereof was written to Mr. Needham; who having by Trials of his own found out the Caufe of this bad Succefs, advifed me to fteep the Grains before I fhould attempt to open them; on doing which I was very foon convinced of his Veracity, and entertained with the pleafing Sight of this wonderful Phænomenon. Since then I have made Experiments at different Times with Grains of the fame Parcel, without being difappointed fo much as once, and particularly on the fourth Day of $\mathcal{F u l y}$ 1747, finding fome of the fame Parcel left, I foaked a Couple of Grains in Water for the Space of thirty-fix Hours, when believing them fufficiently moiftened, I cut one open, and applying fome of the fibrous Subftance to the Microfcope in a Drop of Water, it feparated immediately, and prefented

254 Eels in bligbted Wbeat.

fented to my View Multitudes' of the Anguilla, lying as reprefented $\mathrm{N}^{\circ} \mathrm{X} . \mathrm{B}$, without the leaft Motion or Sign of Life. But Experience having taught me by former Trials, that they might notwithftanding poffibly revive, I left them for about four Hours, and then examining them again, found much the greatef Number moving their Extremities pretty brifkly, and in an Hour or two after, they appeared as lively as thefe Creatures ufually are. Mr. Folkes and fome other Friends were Witnefles of this Experiment.

We find an Infance here, that Life may be fufpended and feemingly deflroyed; that by an Exhalation of the Fluids neceffary to a living Animal, the Circulations may ceafe, all the Organs and Veffels of the Body nay be fhrunk up, dried, and hardened; and yet, after a long while, Life may begin a-new to actuate the fame Body; and-all the animal Motions and Faculties may be reftored, merely by replenifhing the Organs and Veffels with a frefh Supply of Fluid. Here is, If fay, a Proof, that the Animalcules in the Grains of blighted Wheat can endure having their Bodies quite dried up for the Space of four Years together, without being thereby deprived of their living Pozver: and fince, after they are become thus perfectly dry and hard, there feems little Room for farther Alteration, unlefs their Organs fhould
be broken or torn afunder; may they not poflibly be reftored to Life again, by the fame Means, even after twenty, forty, all hundred, or any other Number of Years, provided their Organs are preferved intire? This Queftion future Experiments alone can anfwer.

Some late Difcoveries ferve to fhew our Ignorance concerning the real Eflence and Properties of what we term Life; and, if modeftly confidered, may contribute fomewhat towards improving and enlarging our Ideas of it. Thefe Anguilla, the Wheel Animal, and I doubt not many other Kinds hitherto unobferved, are able to inftruct us, that Life, or the living Power; may be fufpended or ceafe to act for a Length of Time, and yet afterwards may be reftored to its former Vigour. The cutting of the Polype and Star-Fijb into Pieces; the Continuance of Life in thofe Pieces, and their reproducing all the Parts neceffary to make each of them a perfect Polype or Star-Fijh, prove beyond all Contradiction, I will not fay that Life itfelf may be divided, (left I hould give Offence,) but that an Animal polfefled of Life may be cut afunder, and the Paits thereof live afterwards, quite feparate from and abfolutely independent of one another; that ail the Members wanting to each Part may be reproduced; that, in Time, each Part may become as large an Animal, and as perfect
25^{6} Confiderations on animal Life.
to all Appearance, as that of which it was no more than a maimed and imperfect Part*; and befides all this, that they may multiply, and produce young ones, in as great Numbers, and after the fame Manner, as thofe of that Kind that were never cut.Thefe are Truths, the Belief whercof would have been looked upon fome Years ago as only fit for Bedlam.

What Life really is, feems as much too fubtile for our Underftanding to conceive or define, as for our Senfes to difcern and examine. We have, I think, no Criterion or fenfible Proof whereby to diftinguifh Life, but Motion; and there certainly are Motions fo extremely languid, that they can neither become the Object of our Eyes or our Ideas; therefore were Motion infeparable from Life, (which is a Point we cannot I think determine) both might poflibly exift in many Bodies where we fuppofe them not. But whatever be the Efince of Life, it is perhaps not to be deftroyed, or really injured, by any Accidents that may befall the Organs wherein it acts, or the Body it inhabits. Dr. Butler, the late Bihhop of Durbam, in his ingenious Analogy of Religion to the Conffitution and Courfe of Nature, gives it as his Opinion, page 21, that "We have no

[^37]s. more Reafon to think a Being endued " with living Porvers, ever lofes them du" ring its whole Exiftence, than to believe " that a Stone ever acquires them."-" The "Capacity of exercifing them for the pre" fent, as well as the actual Exercife of " them, may be fufpended, (fays he, page " 22.) and yet the Powers themfelves re" main undeftroyed."

But leaving a Subject of which we know fo little, to fpeak fomething farther of our Anguilla:-It appears plainly from the foregoing Experiments, that when the blighted Grains of Wheat have been kept a long Time, and the Bodies of there Animalcules are confequently become extremely dry, the Rigidity of their minute Veffels requires to be relaxed very gently, and by exceeding flow Degrees; for we find, that on the Application of Water immediately to the Bodies of there Animalcules when taken from the dry Grains, they do not fo certainly revive, as they do if the Grains themfelves be either buried in Earth or fteeped in Water for fome Time before they are taken out. The Reafon of which moft probably is, that too fudden a Relaxation burfts their delicate and tender Organs, and thereby renders them incapable of being any more employed to perform the Actions of Life. And indeed there are always fome dead VpI. II.
ones amongft the living, whofe Bodies appear burften or lacerated, as well as others that lie extended (in the Manner fhewn before $\mathrm{N}^{\circ} \mathrm{X} . \mathrm{B}$.) and never come to Life, though we can't difcover any fenfible Injury they have received.

Some Difcretion is needful, to adapt the Time of continuing the Grains in Water or Earth to the Age and Drynefs of them; for if they are not opened before they have been too much or to long foftened, the Animalcules will not only feem dead, but will really be fo. Of the two Grains I mentioned to have been four Years old when put to foak, I opened one after it had lairr thirty-fix Hours, and the Event was as already related: the other I let lie for above a Week, and on opening found all the Ainguille near the Hunk dead, and feemingly in a decayed Condition; but great Numbers iffued alive from the Middle, and moved themfelves brifkly.-Unlefs the Hufks are opened to let thefe. Creatures out after they have been fteeped, they all inevitably perifh in them; and whers taken out and preferved in Water, if the Hufks are left with them, they will die in a few Days; but otherwife they will continue alive in Water for feveral Months together, and fhould the Water dry away, may be revived again by giving them a frefl Supply.

Since

Since the Animalcules we find in blighted Wheat, as well as thofe in four Pafte, are of an Eel-like Figure, it might be very eafy (by fuppofing them both-the fame) to form plaufible Conjectures concerning the Production of Eets in Pafie, a Particular which at prefent feems fo difficult to be accounted for: But as Truth ouglit to be the only Object of our Enquiries, I think myfelf obliged to fiew wherein they differ, left others, who inay not have the Opportunities, or take the fame Pains to examine them, fhould poffibly be mifled into fuch Miftakes by their being fomewhat alike.

It is evident at firft Sight, on their being viewed and compared together, that the Anguilla of bligbted Wheat are in general longer and a great Deal flenderer than thofe in Pafte, that their Motions are alfo much flower, lefs vigorous, and more diverfified: not inceffantly wriggling the Head and Tail, as the Pafte-Anguillce do, but lying fometimes motionlefs, and coiling themfelves at other Times, more in the Manner of Serpents than Eels. They are alfo more tranfparent, and efpecially for fome Length from the two Extremities: But the molt diftinguifhing Mark of all, is a very clear Part about the Middle of their Bodies, which approaches to an oval Figure when viewed in fome Directions, tho' it more frequently appears tri-

$$
\mathrm{S}_{2} \text { angular, }
$$ how they lie extended, when they firft are taken out from the Grain, and feparate in a Drop of Water, either before they begin to move, or when they are really dead.

A reprefents one of them alive and vigorous, and endeavours to fhew the Manner of its moving. The tranfparent triangular Spot is pointed out in both 00.

C H A P. V.
 Of the Proteus.

NONE, of the many different Animalcules I have yet examined by the Microfcope, has ever afforded me Half the Pleafure, Perplexity, and Surprize, as that I am going to defcribe at prefent: whofe Ability of affuming different Shapcs, and thofe fo little refembling one another, that nobody (without actually feeing its Tranfformation performed under the Eye) would believe it to be the fame Creature, has given me Reafon to diftinguifh it by the Name of the Proteus.

When Water, wherein any Sorts of Vegetables
getables have been infufed, or Animals preferved, has ftood quietly, for forne Days or Weeks, in any Glafs, or other Veffel, a fimy Subftance will be collected about the Sides; fome whereof being taken up with the Point of a Penknife, placed on a Slip of Glafs, in a Drop of Water, and looked at through the Microfcope, will be found to harbour Ceveral Kinds of little Animals that are feldom feen fwimming about at large. The Infect we are treating of is one of there ; and was difcovered in fuch Slimelike Matter, taken from the Side of a Glafs Jar, in which fmall Fifhes, Water-fnails; and other Creatures had been kept alive two or three Months, by giving them frefh Water frequently; though the Sides of the Jar had feldom or never been wiped or cleaned.

Having one Evening been examining a little of this Slime, which I found plentifully focked with feveral Kinds and Sizes of Animalcules that were to me no Strangers, fuch as Bell-Aniwialls, Wheel-Animals, Funnel-Animals, and others whereto as yet no Names are given; I was diverted with the fudden Appearance of a little Creature whofe Figure was intirely new to me, moving about with great Agility, and having fo much feeming Intention in all its Motions, that my Eyes were immediately fixed upon it with Admiration. Its Body

262

 Of the Proteus,in Subitance and Colour refembled a Snail's; the Shape thereof was fomewhat elliptical, but pointed at one End, whilft from the other a long, flender, and finely proportioned Neck ftretched itfelf out, and was terminated with what I judged to be an Head, of a Size perfectly fuitable to the other Parts of the Animal. In thort, without the leait Fancy, which is ever careo fully to be guarded againft in the Ufe of the Microfope, the Head and Neck, and indeed the whole Appearance of the Animal, had no little Refemblance to that of a Swan; with this Difference however, that its Neck was never raifed above the Water, as the Neck of a Swan is, but extended forwards, or moved from Side to Side, either upon the Surface of the Water, or in a Plane nearly parallel to the Surface thereof.
N° XI. Plate X. I. is an exact Reprefeno tation of this extraordinary Animal the firft Time I ever faw it.

Its Size was about equal to that of the Wheel-Animal; whofe general Form may be diftinguifhed well enough by the fourth Glafs of MIr. Cuff's IVicrofoope, though the firft is neceffary to form a Judgment of its feveral Parts. It fiwam to and fro with great Vivacity, but flopped now and then for a Minute or tivo, during which Tinme its long Neck was ufually employed, as far as it could reach, forwards, and on every Side,

Of the Proteus.

Side, with a fomerwhat flow but equable Motion, like that of a Snake, frequently extending thrice the Lengtly of its Bociy, and feemingly in Search of Food. Fig. 2. attempts to fhew it as thus defcribed, but is unable to exprefs the curious Turn and Elegance of its Shape.

I could difcern no Eyes, nor any Opening like a Mouth in what appears to be the Head; but its Actions plainly prove it an Animal that can fee; for notwithftanding Multitudes of different Animalcules were fwimming about in the fame Water, and its own progreffive Motion was very fwift, it never ftruck againft any of them, but directed its Courfe between them, with a Dexterity wholly unaccountable, fhould we fuppore it deftitute of Sight.

This Creature feemed to me fo extraordinary, I could not forbear calling all my Family to fee it. And after having viewed it by the fourth Magnifier, that being the Glafs I was ufing when I firt difcovered it, we were very defirous to examine it more ftrictly by enlarging it fill more. Being therefore obliged to fhift the Glafs, which took up fome little Time, I lof my Animal as unaccountably as I had found it; all the Search I could make, for Half an Hour at leaft, being unable to difcover any Thing bearing the leaft Refemblance to it : tho' I replaced the Glafs Thad employed before, and carefully travelS \ddagger
led.

Ied over the whole Drop a great Number of Times. All 1 found remarkable there: in, but which I regarded very little, was a pretty large Animalcule, that I remembered to have feen before what I was now feeking for had prefented itfelf to View, and whofe Appearance was as at fig. 3 . In a Word, after much Pains to no Manner of Purpofe, concluding my new Acquaintance irrecoverably loft, though I could not conceive how, I put the Microfcope afice, very much difappointed and diffatisfied.

A Fortnight or three Weeks after, examining fome more of the fame flimy Matter, I was again furprized and pleafed with another of thefe Animals, that farted up under my Eye, and fwam about as the former had done: but the Water it was in beginning to dry away, and being employed a few Moments in adding a frefh Supply, I loft it as Atrangely as I had done before, and looked for it again to as little Purpofe, till my Patience was wearied out.

Frequently, after this, I examined the fame Matter, in Hopes of finding fome of thefe little Creatures, but all my Endeavours proved fruitlefs; and therefore, as I could give no better Account of them, I determined not to mention them at all. But one Night, fhewing fome other Animalcules in the before-mentioned Slime, to my ingeni-
ous Friend Mr. Turberville, Needbam, (whofe long Acquaintance with the Microfcope has made him equal at leaft to any body in the Knowledge and Ufe thereof,) we fortunately and unexpectedly difcovered one of there, and refolved to watch it carefully by Turns, and fatisfy ourfelves concerning it as far as porfible. Nor indeed were our Precautions needlefs; for when it had been fwinming about a confiderable While (in the Poftures reprefented by fig. I and 2.) we beheld it on a Sudden draw in its Neck and Head in the Manner that a Suail does, fo that both of them difappeared intirely: its Body became then more opake, was haped as $f 0 \cdot 3$. and moved about very nowly with the large End foremoft.

I was now fufficiently convinced how I had been before deceived by the Animal's difappearing in one Shape, and appearing in another fo extremely different. The Difcovery we had made rendered us more eager to difcover farther, and determined us not to leave it till it hould re-affurie its former Shape. But we were ftill mote furprized, when, inftead of fo doing, we faw a Kind of Head (though quite unlike what it had before) thrufting itfelf out a little Way; which new Head foon appeared furnihed with 2 Wheel-like Piece Uf Machinery, the quick Motions whereof drew a Current of Water to it from a confiderable Diftance. The Animal in this Pofture is Chewn fig. 4. Having

Having often puiled in and thruft out this fhort Head, fometimes with and fometimes without the Wheel-work, the Creature, as if weary, remained motionlefs for a While, and then very flowly protruded its long Neck under its own Body, as at fig. 5 ; foon after which it fwam backwards and forwards extending its Neck, and turning it about every Way with wonderful Agility, as if in Search of Prcy. Twice or thrice it altered the Form of its Body, and difpofed its long Neck in the Manner of fig. 6.

Being now without Fear of lofing our Object, we changed our Giafies feveral Times, and continued our Obfervations till we were fully fatisfied of its Transformation; and the Figures herewith given were taken by my Son (who has been much ufed to make Drawings from the Microfcope) cluring this Examination.

C H A P. VI.

Of the Wheeler, or Wheel Animal.

TIIE Royal Society having been pleafed to accept very favou:ably a Deferipticrit of this little Creature, adrireffed to Mavtin Fakes, Efq; their worthy Prefident: as Ifind no Reafon fince that Tirte for altering any Part thereof, I fhall give it here in the fanc Eorm and Words:

Plate X. pa. 266.

- 1ọII.

NoI.

Animalcules .

$\mathscr{N}: \mathbf{X I}$

T O

MARTIN FOLKES, Efq;

Prefident of the Royal Society.
London, Fanuary 16th, 1744-5? S I R,
Take the Liberty to lay before you the beft Account my Obfervations can at prefent furnith out, concerning that wonderful Water Infect the Wheel Animal, which you and feveral other of my curious Friends belonging to the Royal Society have often done me the Honour to examine by my Glaffes, and admire along with me : and as it is extremely difficult to convey by Words only any true Idea of a Creature fo very extraordinary, I have added exact Drawings of its different Forms, Poftures, and Appearances ; in Hope, by that Means, of being underftood by thofe who have never feen the Subject, as well as approved of by thofe that have: in cafe you fhall judge thefe Lines worthy to appear where you prefide.

This wonderful little Infect is found in Rain Water, that has ftood fome Days in Leaden Gutters', or in Hollows of Lead on the Tops of Houfes, or in the Slime or Sediment
diment left by fuch Rain Water; and if carefully fought after may be found alfo in other Places. Mr. Leeureenboek, that diligent Searcher into Nature, was the firft Difcovercr of it about fifty Years ago (viz. in the Year 1702) foon after which he communicated an Account and Drawing thereof to the Royal Society: both which may be feen in the 295 th Num. of the Pbilofopbical Tranfnetions. What Regard was then paid to his curious Difcovery I am wholly ignorant, but probably it was looked upon as a Matter of great Difficulty to find the Animal, and for that Reafon little or no Enquiry was made after it, by the few who then amufed themfelves with Microfcopes: however, from that Time till within thefe few Years (that People have begun to think the Works of their Creator, however minute, not unworthy of their Notice) I queftion very much whether it has ever been feen by any one in England.

In order, therefore, to gratify the laudable Curiofity which at prefent diffufes itfelf amongft us, and feems the happy Omen of great Improvements in the Knowledge of Nature, I have not only fhewn this amazing Animal to Numbers of Gentlemen at my own Home, but having, by the Affiftance of a more convenient Microfcope for the Purpofe than Mr . Leeuroentboek probably was Mafter of, examined it with the ftricteft Attention,

Attention, under all its various Appearances, and made feveral Obfervations thereon more than he has left us, the fame Motive induces me to give the beft Account thereof I can.

I call it a Water Animal, becaufe its Appearance as a living Creature is only in that Element. I give it alfo for Diftinction Sake the Name of Whecler, Wheel Infect or Animal; from its being furnifhed with a Pair of inftruments, which in Figure and Motion appear much to refemble Wheels. It can, however, continue many Months out of Water, and dry as Duft ; in which Condition its Shape is globular, its Bignefs exceeds not a Grain of Sand, and no Signs of Life appear. Notwithftanding, being putinto Water, in the Space of Half an Hour a languid Motion begins, the Globule turns itfelf about, lengthens by flow Degrees, becomes in the Form of a lively Maggot, and moft commonly in a few Minutes afterwards puts out its Wheels, and fwims vigorounly through the Water in Search of Food; or elfe, fixing by its Tail, works them in fuch a Manner as to bring its Food to it. But fometimes it will remain a long While in the Maggot Form, and not fhew its Wheels at all.-The Drawings reprefent thefe different Changes; and I hope to thew how they are performed.

If the Water ftanding in Gutters of Lead, or the flimy Sediment it leaves behind, has any Thing of a red Colour, one may be almoft
certain of finding them therein *, and, if in Summer, when all the Water is dried away, and nothing but Durt remains, that Duft appears red, or of a dark brown, one fhall feldom fail, on putting it into W-ater, to difcover Multitudes of minute reddifh Globules, which are indeed the Animals, and will foon change their Appearance, in the Manner juft now mentioned.

The Minutenefs of thefe Animais makes it almoft impoffible to know whether you have them in the Water or not, without examining it by Glaffes: the fame Minuteners renders it alfo impracticable to feparate them from the Dirt or Slime. found along with them; and on which perhaps they feed: in Short, they are intirely microfcopical Infects, and whatever is faid concerning them muft be underftood to imply, as under Infpectioni by the firft or fecond Magnifier of the Double Microfcope.

My Way of difcovering them is by placing a fmall Drop of the Water, wherein I know they are, with fome of the Sediment therein, under the third or fourth Magni-

[^38]
Of the Whbel Animal.

fier ; and, when I have thereby found them; I change the Glafs for one that fhews them larger, and then watch all their Motions with great Attention.

This little Creature fhews itfelf at firt (unlefs it be in its Globule Form) like a tranfparent Maggot or Caterpillar, and appears lengthening out its Body confiderably at fome Times, and at others contracting it as much. Its Motion from Place to Place is likewife then performed in the Manner of fuch Infects, fixing firft its Tail and extending its whole Body, then fattening its Head and drawing up its Tail to itt: © 0 that by fixing its Tail and pufhing its Body forwards, faftening its Head and drawing its Tail thereto, alternately, it works itfelf along pretty nimbly. Vid. fig. I. 2. Plate XI.

But one thall often behold it changing this Appearance in an Infant, and affuming a Form extremely different; for its Snout being pulled fomewhat inward, the anterior End becomes clubbed; and immediately dividing, exhibits, moft furprizingly, to view, aCouple of femi-circular Inftruments, before unfeen, round the Edges whereof many little Fibrillae move themfelves very brifkly, fometimes with a Kind of Rotation, and fometimes in a trembling or vibratirg Manner. An Opening or Mouth alfo appears in the Middie between thefetwo Semi-circles. When ins
this Condition, the Animal is often feen to unfaften its Tail, and fwim along with a great Deal of Swiftnefs, feemingly in Purfuit of Prey. Vid. fig. $3 \cdot$

The Subftance of this Animal feems to be chiefly mufcular, every Part thereof being capable of great Diftention and Contraction. It has likewife a confiderable Degree of Tranfparency, whereby the Syftole and Diaftole of its Heart, and the periftaltic Motion of the Inteftines, are rendered plainly vifible : and a Kind of Undulation may be perceived every where within it. It appears ftrong and vigorous in Proportion to its Size, and feems almoft continually hunting after minute Animalcules or other little Bodies wherewith the Waters abound.

Fig. 1. fhews the Form of the Infect under Examination, when it appears like a Worm or Maggot, and fully extends its Body. Sometimes in this Condition little Spicula appear darted out at the Head End, with a Sort of vibrating Motion ; the Snout is alfo fometimes more flat, and fharper at other Times, than reprefented here. Fig. 2. defcribes the Manner of its moving from Place to Place whilf in the Maggot Form, by bringing the Head and Tail nearly together ; then ftretching the Body out, fixing the

Head

Head down, and drawing up the Tail to it.
Fig. 3. exhibits the Infect with its two femi-circular Parts put out, and exactly in the Pofture it places itfelf, when it prepares either to fwim away, or to faften by the Tail and work its Wheels about.
The general Account already given, will, it is hoped, render my Tafk the eafier, now I come to examine the moft difinguifhing Parts of this Animal; wiz. the Head, the Thorax or Breaft, the Abdomen or Belly, and the Tail: each whereof I thall defcribe with all the Perfpicuity and Brevity the Subject will allow.
The Fafhion and Conftructure of the Head is wonderful, and extremely different from that of any other Creature hitherto defcribed ; its fudden Change out of one Form into another is alfo unufual and furprizing: for, from being perfectly tapering, and ending almoft in a fharp Point, like the Head of a common Maggot, it becomes on a fudden as wide as any Part of the whole Infect, opens a large Mouth, and is furnifhed by Nature with an amazing Piece of Machinery whereby to procure its Food.

One of there Animals, with the Head as here defcribed, is reprefented ffo. 4. where a Couple of circular Bodies, armed with fmall Teeth like thofe of the Balance-Wheel

VoL, II.
T
of a Watch, appear projecting forwards beyond the Head, and extending fideways fomewhat wider than the Diameter thereof. They have very much the Similitude of Wheels, and feem to turn round with a confiderable Degree of Velocity, by which Means a pretty rapid Current of Water is brought from a great Diftance to the very Mouth of the Creature, who is thereby fupplied with many little Animalcules and various Particles of Matter that the Waters are furnifhed with.

As thefe Wbeels (for fo from their Appearance I thall beg Leave to call them) are every where exceffively tranfparent, except about their circular Rim or Edge on which the Cogs or Teeth appear, it is very difficult to determine by what Contrivance they are turned about, or what their real Figure is, though they feem exactly to refemble Wheels moving round upon an Axis.

It is alfo hardly poffible to be certain whether thefe circular Bodies, round the Edges of which the Teeth are placed, are of a flat Form, or hollow and of a conic Figure. But they appear rather to be the latter; and if fo, they may be likened, not improperly, to a Couple of fimall Funnels with Teeth fet round their large Ends. However, be they flat or hollow, they feem plainly to be protruded from a Pair of tubular Cafes, into which they can be again retracted
traçted at the Will and Pleafure of the Animal ; and their Ufe undoubtedly is to procure it Food, by Means of that Current or Vortex which the Motion of them excites. They turn not always in the fame Manner, nor with equal Swiftnefs, neither is the Appearance of their Teeth or Notches conftantly the fame: for one fhall fometimes fee them moving, in contrary Directions, and fometimes turning both the fame Way.. It is alfo not unufual, after they have been moving one Way for a confiderable Time, to behold them ftop on a Sudden and turn directly contrarywife. Their feeming Rotation is fometimes very faft, and at other Times very flow; increafing or decreafing fometimes gradually, and fometimes all at once.

The Teeth or Cogs of the Wheels feem to ftand very regularly at equal Diftances: but the Figure of them varies according to their Pofition, the Degree of their Protrufion, and perhaps the Will of the Animal. They appear fometimes like minute oblong Squares rifing at right Angles from the Periphery of a Circle, like ancient Battlements on a round Tower; at other Times they terminate in fharp Points, and all together refemble a Kind of Gothic Crown. They are often feen in a curvular Direction, all bending the fame Way, and feeming like fo many Hooks: and now and then one fhall
perceive the Ends of them to be clubbed, or in Appearance like a Number of little Mallets. This Figure, and the firft, they however affume but rarely.

When the Forepart of this Creature firft appears to open or divide, the Parts above defcribed, which when fully protruded refemble Wheels, and feem to have a quick Rotation, coming then but a little Way beyond their tubular Cafes, (and being in that Condition like round Pieces of Paper folded in the Middle, or Funnels whofe. Sides are flatted almoft together,) feem only like a Couple of femi-circular Parts, about theEdges whereof, what are feen afterwards like the Teeth of the Wheels, appear only as little Fibrilla or Spicula, having all a nimble and continual vibrating Motion upwards and downwards, whereby the Water becomes greatly agitated, and brought to the Animal from feveral Times the Diftance of its own Length. Vid. fig. 3 .*

Befee it begins to fhew itfelf in this Pofture, ii frequently faftens its Tail to the flimy dirty Matter found with it in the Water, or elfe to the Glafs whereon it is placed for View; and buoying up its Body in the Water,

* This Vibration commencing commonly fome Time before the Whel-Work puithes out and exerts its rotatory Motion, fome People, not overfock'd with Patience, have concluded, that it has no other Motion, than fuch a Vibration of the Fibrille ; but I am perfuaded a little more Attention will convince them of their Mifake.
pufhes its Head forwards, directing it this Way and that Way with a great Deal of Agility, and feemingly in Search of Food. In the mean While, many minute Animalcules and other little Bodies are drawn along with a rapid Current of Water, fome whereof are taken in and fwallowed, and others rejected, though brought to the Opening of its Mouth, which appears exactly in the Middle, between the two above defcribed Semi-cirćles.

While the Sides of the Wheels are thus doubled as it were together, there is little or no Appearance of any circular Motion, the Fibrilla about their Edges feeming to have only a quick Vibration : but moft commonly, after two or three Minutes, this extraordinary Apparatus becomes protruded farther, the two Semi-circles pufh out, and open at the fame Time; each of them immediately refembles a complete Circle or Wheel, feems to turn round very regularly, and its little Fibrille appear changed into Cogs or Teeth, in the Manner above mentioned.

As the Animal is capable of thrufting thefe Parts out, or drawing them in, fomewhat in the Way that Snails do their Horns, the Figure of them is different in their feveral Degrees of Extenfion and Contraction, or according to their Pofition to the Eye of the Obferver, whereby they not only appear in all the various Forms before reprefented, but feem at certain Times as if the circular Rim
of the Wheel or Funnel were of fome Thicknefs, and had two Rows of Cogs or Teeth, one above and the other below that Rim.

When the Wheels appear in Motion, the Head feems large in Proportion to the Size of the Animal; and tho' it is then every where tranfparent, a Ring or Circle, inore particularly remarkable for its Clearnefs, may commonly be perceived about the Middle of the Forehead, a little above the Mouth. (See fig: 5. a.) I thall not pretend to call this the Seat of the Brain, though its Situation and Appearance would perhaps juftify fuch a Suppofition; but as I am fully fenfible how very eafy it is for me to be miftaken, I am extremely fearful of leading others into Miftakes. Many Veffels which feem to take their Origin from hence are difcernible in the Head, wherein fome tranfparent Fluid appears continually agitated with a Sort of fluctuating Mation. All thefe Veffels and every Part of the Head are capable of great Diftention and Contraction, and frequently alter their Figure.

The Thorax or Breaft b, is joined to the Head by the Interpofition of a fhort annular Circle or Neck c, which is very plainly diftinguifhed when the Infect is ftretched out, and is working with its Wheels. This Thorax is nearly one fixth: Part of the whole Animal, and deferves the moft
moft careful Examination; for'as the Heart d may be feen therein more diftinctly, its Figure and Motions may confequently be obferved much better in this than in any other fmall Creature I have met with.

The Heart d is placed almoft in the Middle of the Thorax, where its Syfole and Diaftole can't fail to catch the Eye of everÿ. attentive Ubferver; for it is feen through the Back of the Infect very plainly, fhut ting and opening, alternately, with great Regularity and Exactnefs. Its Size is proportionable to the Creature's Bignefs, and its Shape during the Syftole or Time of Contraction is nearly circular, being compofed feemingly of two femi-lunar Parts; which then approach each other, laterally, and form between them a roundifh or Horfe-fhoe-like Figure, whofe upper Side is flat, but the under one convex. The Diaftole is performed by a feeming Separation or O'pening of thefe two femi-lunar Parts, whereby the tranfverfe Diameter of the Heart is very much enlarged. This Separation begins exactly in the Middle of the lower Part next the Tail, and opens to fuch a confiderable Width upwards, that the two Parts when at their utmoft Diftention feem: only joined by an arched Veffel at their anterior End. The alternate Motions of Contraction and Dilatation are performed with great Strength and. Vigour, in: prettyt
much the fame Time as the Pulfations in the Arteries of a Man in Health; as I have often proved by feeling my own Pulfe whilft I have been viewing them. In each of the femi-lunar Parts there appears a Cavity, which feems to clofe when thofe Parts come together, and to open itfelf again when they feparate.

The Motions of the Heart are communicated to all the other internal Parts of the Thorax; and indeed feem to extend a great Deal farther ; for a ftrict Examination difcovers, at the fame Time, throughout the whole Animal, Contractions and Dilatations going on that are apparently correfpondent thereto.

It is however neceffary to remark, that thefe Motions of the Heart are, fometimes, as it were fufpended, or unperceivable for two or three Minutes, after which they become renewed, and go on again with the fame Vigour and Regularity as before. And this Sufpenfion of the Syftole and Diaftole, has made fome Gentlemen, to whom I have Shewn it, doubtful, whether the Part we have been defcribing can therefore be the Heart. But their Doubt arifes wholly from a Suppofition that the Hearts of minute Infects muft continue beating with the fame Conftancy, and be fubject to the fame Laws, as the Hearts of the larger Kinds of Animals, which probably is not the Cafc.

The

The Situation, the Size, the Contraction, and Dilatation of the Part we fuppofe to be the Heart, all concur in Support of that. Opinion ; but they can hardly all agree with. any other of the Vifcera: and as to the Sufpenfion of its Motion, fince in the Tortoife, the Viper, the Frog, and perhaps many other Creatures who become torpid at fome Seafons, the Motion of the Heart is fufpended or unperceivable for a confiderable Length of Time, there is no Abfurdity in believing that the fame Thing may happen to this Infect, which is fometimes in a torpid or inactive State as well as they, without doing it any Injury. Nay, that the Motion: of its Heart (whether this Part be it or no) mutt unavoidably be furpended, whilt this very Animal is contracted into a Ball, and as dry as Duft, is, I think, highly probable.

The Blood or circulating Fluid is fo abfolutely colourlefs in this Creature, that the Current of it through the Veffels is undiftinguifhable by Glaffes, however likely it may feem; from the ftrong Contraction of the Heart, that a Circulation muft be carried on, and that too very brifkly. One fees indeed almort every where a Sort of irregular Agitation of fome Fluid, which may be perhaps the compound Motion of Currents running different Ways and forming fuch an

Appearance,

Appearance, though no one fingle Current is any where diftinctly vifible.

From the under Part of the Thorax a fmall tranfparent Horn proceeds, which can be never feen unlefs the Infect turns on its Back or Side. I know not whether it be a Diftinction of Sex, or to what other Purpofe it may ferve; for thefe minute Animals cannot poffibly be fo managed as to bring it under Examination when one pleafes; and as it is only feen fometimes by. Accident, I cannot pretend to fay whether all or fome of them. only are furnifhed therewith. It is fhewn in the Figures 1 and $2 \cdot a a$. being more commonly feen when the Creature is. in the Maggot Shape than at other Times.

Immediately below the Thorax is another: annular Circle or Divifion b, joining upwards to the Thorax, and downwards to the Ab -: domen ; the Entrance whereof it ferves oc:cafionally to enlarge or diminifh: This is fhewn fig. 5. at the Letter e.

The Abdomen or Belly: f : is much the larget Part of the Animal, ared contains the Stomach and Guts. When the Infect is full of Food thefe Bowels appear opake and of a Blood-red or crimfon Colour, extending in Length from the Thorax quite through the Belly and great Part of the Tail, and exhibiting a fine View of the periftaltic Motion; or fuch gradual Contractions and Dilatations as

Of the Wheel Animal. $\quad 283$

feem intended to propel their Contents downwards. Around the Bowels are many Ramifications of Veffels both longitudinal and tranfverfe; and between the Bowels and the Skin a Fluid exceedingly tranfparent fluctuates in a Manner Words cannot defcribe.

The Belly is capable of ftretching out greatly in Length, or being fhortened very much and widening its Diameter : in fhort, it affumes many Shapes, and becomes, on Occafion, a Cafe including the whole Animal, as will by and by be thewn.

From a Joint at the lower Part of the Belly to the pofterior Extremity is what I call the Tail. (Vid. fig. 5. g.) It has three other Joints, to the lowermoft whereof the Bowels extend themfelves, and appear contracting and dilating upwards and downwards, tho not fo remarkably when they are empty as full. This Part runs tapering from the Belly to its End, and is lengthened or fhortened at the Creature's Will. When it is inclined to fix itfelf by the Tail to any Thing (as commonly is its Way when it intends to work with its Wheels) two, four, and fometimes fix little tranfparent Hooks or Fins may be feen thruft out at its End, and ferving for that Purpofe. They are placed in Pairs : one Pair is at the very Extrémity, and the other two a little Way up the Sides; but the three Pair are feldom feen together.

Though

Though this Infect fwims very fiviftly, and feemingly with great Eafe, neither Legs nor Fins can be perceived to affift it in fo doing, unlefs thofe juft now mentioned about the Tail, and the Horn under the Breaft, may be imagined fuch. Wherefore fince the Wheels in its Head are always fet to work very brifkly whenever it begins to fwim, one may reafonably prefume they are the Inftru-. ments by which it performs this Office. And, indeed, looking at the Manner of its fwimming through a Hand Magnifier, when it is at large in a Phial of Water, will confirm this Opinion greatly ; for there one fhall often difcern it rifing in a perpendicular Direction, and by the Rotation of its Wheels climbing as it were upwards and mounting through the Water ; but finking down again inftantly upon the cealing of their Motion.

As I call thefe Parts Wheels, I alfo term the Motion of them a Rotation, becaufe it has exactly the Appearance of being fuch. But fome Gentlemen have imagined there may be a Deception in the Cafe, and that they do not really turn round, though indeed they feem to do fo. The Doubt of thefe Gentlemen arifes from the Difficulty they find, in conceiving how, or in what Manner, a Wheel, or any other Form, as Part of a living Animal, can poffibly turn upon an Axis, fuppofed to be another Part
of the fame living Animal ; fince the Wheel muft be a Part abfolutely diftinct and feparate from the Axis whereon it turns; and then, fay they, how can this living Wheel be nourifhed, as there cannot be any Veffels of Communication between that and the Part it goes round upon, and which it mult be feparate and diftinct from?

To this I can only anfwer, that place the Object in whatever Light or Manner you pleafe, when the Wheels are fully protruded they never fail to fhew all the vifible Marks imaginable of a regular turning round, which I think no lefs difficult to account for, if they do not really do fo. Nay, in fome Pofitions, you may with your Eye follow the fame Cogs or Teeth whillt they feem to make a complete Revolution; for, the other Parts of the Infect being very tranfparent, they are eafily diftinguifhed through it. As for the Machinery, I Thall only fay, that no true Judgment can. be formed of the Structure and Parts of minute Infects by imaginary Comparifons between them and larger Animals, to which they bear not the leaft Similitude. However, as a Man can move his Arms or his Legs, circularly, as long and as often as he pleafes, by the Articulation of a Ball and Socket, may not there poffibly be fome Sort of Articulation in this Creature whereby its

Wheels or Funnels are enabled to turn themfelves quite round *?

Having defcribed the moft remarkable Parts of this Infect, I fhall, by the four following Figures, endeavour to reprefent fome other of the moft ufual Forms it affumes, both when its Wheels are fully protruded, and when the Edges only of them are fhewn with their little vibrating Fibrilla.

Fig. 6. is the Wkeel. Infect raifing itfelf on the Tail, ftooping the Head downwards, and working its Wheels about. This is a common Pofture, in which the Back is bowed, and the Belly appears Chortened and diftended, great Part of the Thorax being taken into it. The Wheels in this Pofition feem to turn horizontally, with their Backs upwards and towards the Eye, in which Manner they appear very diftinct and large, with their Teeth bending all the

* It is certain all Appearances are fo much on this Side the Queftion, that I never met with any who did not on feeing it call it a Rotation; though from a Difficulty concerning how is can be effected, fome have imagined they might be deceived : Mr. Leetuwenboek alfo declared them to be Wheels that turn round; vid. Phil. Tranf. N ${ }^{\circ}$ 295. But I thall contend with nobody about this Matter: it is very eafy for me I know to be miftaken, and fo far poffible for others to be fo too, that I am perfuaded fome have miftaken the finimal itfelf, which perhaps they never faw, whilf inftead thereof they have been examining one or other of the feveral Water-Animalcules that are furnifhed with an Apparatus commonly called W Wherls, though they tirn not round, but excite a Current by the mere Vibration of Fibrillie about their Edges.
fame Way, and refembling as many Hooks. The different Parts of the Animal, as before defcribed, are explained by this Figure.
Fig. 7. Shews the Animal turned with its Side towards the E'ye, as it frequently prefents itfelf. The Wheels here have the fame Appearance as in the preceding Figure: but one of them lies conifiderably below the other, the whole Body being fomewhat twifted, whereby the Horn under the Thorax is diftinctly brought to View.
Fig. 8. and 9. exhibit two of thefe Creatures in the Poftures they are often feen, when the Wheels are nöt thruft out, but the Fibrillo appear moving up and down with very quick Vibrations. We fee particularly in fig. 9. the whole Space between thefe Parts gaping like a wide Mouth, and different from any of the former Figures.
To defcribe the many Poftures I have feen this Creature in would be a Wafte of Time; but the Manner of its changing, when it pleafes, into a round Globule or Ball, is fo remarkable a Part of its. Hiftory, that I muft attempt to give the beft Account of it I can; as I have many Times obferved very attentively every Step in its Metamorphofis.

After having turned about its Wheels, in
various Directions, for two or three Hours, in the Water, and probably filled its Belly, (during which Time its Tail remains faftened to fome Dirt or Slime, or to the Slip of Glafs it is placed upon,) one Thall perceive it, by Degrees, moving them with lefs Vigour, and at laft drawing them quite within the Head. The Head and included Wheels fink down then very flowly into the Thorax, the Belly fwells, and the Whole appears like fig. 10.

Soon after, the Thorax alfo (which now contains the Head and Wheels) is drawn within the Belly, and below the annular Circle at the Top of it, as fig. II. reprefents.

The faid annular Circle then contracts, and its Sides come together like the Sides of a Purfe when the Strings are pulled, clofing over the Head and Thorax, which, now, filling the upper Part of the Belly, make it nearly round, like fig. 12.

In the laf Place, the three upper Joints of the Tail come down over the lower Joint, which becomes fixed ; immediately the Belly alfo finks, or is pulled down, and inclofes the whole Tail. All the Parts being now included in the Belly, which becomes their Cafe or Covering, it fwells into a round Ball, lies without any Motion, and appears confiderably opake. (Vid. fig. I3.) It ftill adheres however by the Tail.

Some-

Sometimes, when in the Maggot Form; it rolls its Head and Tail together, without drawing them into its Body; in the Man ner of fig. 14.

All my Endeavours have been hitherto unable to difcover how thefe Creatures propagate, though for three Years patt I have never been without them, and am continually fenfible of their Increafe, by obferving Numbers of extremely fmall ones appearing from Time to Time: which undoubtedly are young Fry. There's however good Reafon to believe they proceed from Eggs: for I have often feen, in the Water along with them, Parcels of Ova, gelatinous like the Spawn of Frogs, and of a Size proportionable to the Wheel Animal.-But after whatever Manner they are propagated, 'tis pretty certain, from the exceeding Minutenefs of fome in Comparifon of others that they come out at firft in their perfect Shape, and are not the Nympha of any other Infect, as many Creatures found in the Waters are.

Mine have conftantly been kept in the fame Glafs Veffel, fometimes with and fometimes without Water: for as the Sides of the Glafs were often left dry, I have fuffered thofe that had faftened themfelves there to remain fome Months in that Condition: neverchelefs, I always found them to become as lively as ever on giving them frefh Water. Mr . Leeurvenhoek kept fome Dirt, taken out of a Leaden Gutter, and dried as hard as.
Vol. II. U Clay,

Clay, for twenty-one Months together; ancs yet when it was infufed in Water, Multitudes of thefe Creatures foon appeared unfolding themfelves, and quickly after began to put out their Wheels :/and I myfelf have experienced the fame with fome that had been kept much Ionger.

All their Actions feem to imply Sagacity and Quickners of Senfation. At the leart Touch or Motion in the Water they inflantly draw in their Wheels. Notwithftanding their Smallnefs, one fees feveral Species of Animalcules fwimming in the Water with them, compared to which themfelves appear tike Whales. Thefe Animalcules are their Prey: which they take either by Purfuit, or draw to them by the Current of Water which: their Wheels excite.

It has confantly been my Endeavour to difcover the Eyes of this Creature, but I have never been able to difcern that it has any. And yet, when one beholds it fwimming along with great Swiftnefs, turning its Head on every Side, and feemingly purfuing its Prey, avoiding any Dirt or other Matters. in the Water that would obftruct its Paffiage, and directing its Courfe with as much feeming Care; Choice, and Conduct as Animals that have Eyes do, orie can hardly think it deftitute of Sight.

I would induftrioufly avoid giving way to Fancy in Cafes of this Nature, but muda acknow-
acknowledge my fufpecting that it has Eyes fomewhere within its Wheels : and my Keafons for this Sufpicion are, its blundering, irregular, and flow Motions while it appears in the Form of a Maggot, before its Wheels are put out, and the Regularity, Swiftnefs, and fteady Direction of its Motions afterwards : whereto I might add, that when it fwims along its Wheels are always out. Befides, all the Creatures we know that move themfelves from Place to Place with Swiftnefs, either by running, flight, or fwimming, are remarkable for their Keennefs of Sight; and indeed it feems probable that the fame Rule may hold through all the Animal Creation: for as the Gifts of Providence are ever fuited to the Exigencies of its Creatures, and contrived in the beft Manner for their Prefervation, we can fearcely imagine Swiftnefs is beftowed on any with m out the additional Bleffing of Sight to direct its Courfe; fince the former without the latter muft unavoidably precipitate the Creature into continual Danger of Deftruction.-This makes me fuppofe it may polfibly have Organs of Sight fornewhere about the Wheels: nor is there any thing more extraordinary in that than in the Eyes of Snails, which are generally allowed to be placed at the Extremities of their Horns, and confequently mutt be thruf out and drawn in with them.

I cannot conclude this Subject without doing all the Honour I am able to the Me- that we are obliged to his indefatigable Induftry for the firft Difcovery of this moft furprizing Infect.

C H A P. VII.

Different Kinds of Wheel Animals.

THERE are found in the Waters feveral other Kinds of Animalcules, furnifhed with Inftruments for making an Eddy, and thereby bringing to themfelves fuch minute Infects, or very fmall Particles of Matter, as ferve them for Food. Among there fome appear to have a rotatory and others a vibrating Motion; fome alfo feem capable of being employed both Ways.

In the Ditch-Water fent me from Norwich, as before-mentioned, page 233, I difcovered feveral Wheel Animals with Tails enormounly long, but in all other Refpects, as far as I could difcern, differing not at all from thofe juft now defcribed; the Motion of the Wheels, the Pulfation of the Heart, and the Undulation of the Bowels appearing exactly the fame in both: Nothing therefore feems farther neccffary than to give the Picture of them, which fee Fig. 1. Plate XII.

Fig. 2 and 3 in the fame Plate, reprefent two different Sorts of Animalcules, fevesal whereof were found fome Years ago, in Water

Water taken out of a Leaden Ciftern that Rood in Somerfet Garden.- The anterior. Part in the firft of thefe has a large Opening, furrounded with Charp Spicula, a, and is evidently cruftaceous, though the Body and Tail are mufcular. It is not eafy to difcern the Inftruments within this Mouth or Opening that ferve to form a Current of Water, as the Creature does not thruft them beyond the Neck b. When it fwims along it feems extremely formidable to the minuter Animalcules, Multitudes of which are frequently fucked in, together with a great deal of Water, which is fouted out again immediately. When the Tail is faftened to fomething, it turns the Body about and directs its wide Mouth to every Side, and brings a Stream of Water from a confiderable Diftance. The Motions of the Bowels are diftinctly vifible in this Animal ; and within feveral of them one may fee an opake oval Bodyc, which by its Size and Appearance I imagine to be an Egg; which if it is, it fignifies their Increafe to be much lefs than that of moft other minute Animalcules; for I never obferved more than a fingle one in any of them; and indeed I never found the Creatures themfelves in very great Number. They are fomewhat larger than the common Wheel Animal.

Fig. 3. reprefents an Animalcule found in the fame Water with the former, and refembling it pretty much in the Size and U_{3} Shape

294 Different Wbeel Animals.

Shape of its Body, though its Head and Tail are different : for this Creature's Tail is furnifhed with a Couple of Infruments a a, that lie fheathed therein, unlefs when they are made ufe of to faften it to any Thing, that it may the better be enabled to occation an Eddy of Water and bring its Food to it with the Stream. During the Time it is fo employed the Body appears extended (as in the Figure) and a Number of Fibrilla, protruded from two projecting Parts 66 that compofe the Head, put the Water into a violent Motion, and excite a Current, by their vigorous and quick Vibrations, which fets directly towards the Mouth c.

This little Creature is entirely mufcular, and frequently changes the Form of its Appearance by contracting its Body and pulling in its Head or Tail. The periftaltic Motion, of its Bowels, which are confiderably opake, is feen working upwards and downwards in an odd Manner, but no Part can with any Certainty be known to be either Lungs, Heart, or Stomach. In many of them how ever, an oval Body, which I guefs to be an Egg, is very dintinguifhable, contained feemingly in a Uterus, or Veffiel, that feparates it from the other Bowels. They lived with me feveral Days in the Water they were brought in, buit I could never be fo lucky to fee any of there Eggs, (if fuch they are) difcharged from thẹ Animal.

C H A P.

[29.5]

C H A P. VHI.

Animalcules with Sbells and Wbeels.

IN the Summer of the Year 174.5, I firft took Notice of three Sorts of Wheel Aninols* having Shells, which I found herding together in the Water of the Ciftern in the Garden of Somerfet Houfe, and have feen fince in other Waters. The firft of them is reprefented by the Figures 4, 5, 6: the fecond Sort by thofe $7,8,9,10$: and the chird Sort are marked 11, 12, 13. Plate XII.

The firf Sort when extended is in Length about twice its Breadth. It is contained in a Shell, whofe Fore-part or End is armed with four very long Spikes on one Side of its Rim, the other Side whereof has no Spikes, but is waved or bent in two Places, much like the Form of a Turkih Bow: vid. fig. 6. The pofterior End has a large circular Hole through which the Tail is put out. By this Tail it faftens itfelf to any Thing it meets with, when it intends to fet the Wheel-work at its Head in Motion; but in fwimming, and at ail other Times when it is not fixed by it, it wags this Tail backwards and forwards as a Dog does his,

[^39]296: Animaloules with Stuells and Whecls.
and makes ufe of it on other Occafions, which we fhall prefently take Notice of.

Its Body feems divided into three Parts, the Head, Thorax, and Abdomen; each whereof is capable of great Diftention and Contraction; the Creature being able by extending them all three to protrude its Head beyond the Shell, and on the contrary, by contracting them, to draw its whole Body a great Way within the fame.

The Head when extended divides into two Branches, between which another Part (a Kind of Probofcis) is pufhed out, at whofe End are two Fibrils, that appear when at Reft like one very broad Spike, but which it can move very brifkly to and from each other with a vibrating Motion, bring= ing thereby a Stream of Water to its Mouth, whofe Situation is juft betwixt them. And the better to effect this, feveral of the like Fibrille are placed on each Side of the Head, which vibrate in the fame Manner, as do likewife fome very fmall ones at either Corner. All this may be underfood by viewing fig. 4.

But fometimes it alters the Form of the two Branches, rounding the Ends thereof, and changing the vibrating Motion of its Fibrilla into a Rotation, or at leaft what feems to be fo; at which Time the Head eppears as at ffig. 5:
!̣mme-

Animalcules with Sbells and Wbeets. 297

Inmediately to the lower Part of the Head the Thorax is joined, feemingly of a mufcular Contexture, and containing within it an Inteftine, which by its Motions muft be cither the Lungs or Heart of the Animal ; fee 6. fig. 4. and 5 .

A Communication between the Thorax and the Abdomen or Belly is continued by Means of a flort Veffel c, whofe alternate Contractions and Dilatations occafion the Abdomen to rife and fall alternately, having at the fame time a Sort of periftaltic Motion. Through this Veffel or Gut all the Food the Animal takes in is conveyed directly to the Abdomen, where it becomes digefted, and is then difcharged by the Anus, which is placed fomewhere near the Tail; but we have not yet been able to difcover exactly. where, for the Fæces are thrown out fometimes at the lower Opening of the Shell, and fometimes they are carried upwards (betweon the Shell and the Body of the Animal) and caft out with a confiderable Force at the other End, by the Motions of the Fibrilla, which the Animal can employ to form a Current, not only towards him but from him.

The Tail has three Joints, and is cleft or divided at its Extremity, by which Means it can the better faften to any Thing. It is feen moft commonly ifluing through the Holeat the lower End of the Shell, wagging nimbly

298 Animalcules with Sbells and Wheels.
bly to and fro, and is made ufe of in fwimming to fteer or direct its Courfe : but when the Water wherein the Animal abides is almoft dried away, or when it has a Mind to compore itfelf to reft, it contracts the Head and Fore-part of the Body downwards, and pulls the Tail upwards, in fuch a Manner that the whole Animal is brought intirely within the Shell: and at fuch Times only the anterior Edges of the Shell, and the Spikes proceeding therefrom, can te fully diftinguifhed, and determined to be as reprerented fig. 6. whore Defcription was juft now given. For the Shell is fo extremely tranfparent that its Terminations cannot be feen when the Infect extends beyond it; but whatever paffes within it is as plainly vifible as if there was no Shell at all.

Fig. 7, 8, 9, and 10, thew the feveral Appearances of the fecond Species of thefe melled Animals having Wheels, which differs from the firft in fome Particulars now to be defcribed.

The Body of this Species confifts of three Parts, in like Manner as the other does; only the Thorax and Abcomen are not in this feparated by a Gut or intermediate Veffel as they were in that, but are joined immediately together; and at that Place in the Thorax, where, in the other Species, I have defcribed an Inteftine, which I fuppofed to be cither the Lungs or Heart, an Heart is plainly per -

Animalcules with Sbells and Wbeels. 299

ceived in this, having a regular Syftole and Diaftole, and nearly of the fame Form and Size with the Heart of the common Wheeler, as the Figures 7, 8, and 9, are intended to thew at the Place marked a.

This Species likewife draws its Head and Tail occafionally within the Shell, as at fig. 10; and then its Shell appears terminated on its Fore-part by fix fhort Spikes on one Side of the Rim and two on the other, inftead of the four long'ones wherewith the firft Sort is armed : but this does not always protrude its Head like the other, fo far out as to cover the Edges of the Shell intirely: fometimes on, the contrary, the Spikes of the Shell are feen beyond the Head, and the Fibrilla mentioned in the former Defoription appear playing between them, as at fig. 7. However the Head very commonly is as at the Figures 8 and 9.- Thefe are the chief Particulars wherein this Animal differs from the former.

As to their Propagation, both Species carry their Koung in oval Sacculi or Integuments, fafiened, externally, to the lower Part of their Shells fomewhere about the Tail: There Sacculi are fometimes opake only at one End, and feemingly empty at the other, fee fig. 5: Sometimes the Middle Part appears opake with a Tranfparency all round, like fig. 7; and much Variety of Darknefs and Tranfparency may be diftinguifhed, ac-

300 Animalcules with Sbells and Wheels.
cording to the different Maturity of the Ennbrios in thefe Bags.
It is highly entertaining to fee a young one burft its Integuments, and gradually force its Way through them : in doing which the Parent is greatly effiftant, for by wagging her Tail to and fro, and ftriking the Shell, Skin, or Covering, brikkly therewith, the young one's Head Part becomes as it were fqueezed forwards into the Water, tho' the Tail cannot fo foon be difengaged. In this Condition the young one fets its Wheels a-going, and exerts all its Endeavours, 'till at laft it frees itfelf from Confinement, and fwims away, wagging its Tail as the old one had done before it, and leaving the Integument adhering to the Shell of the Parent; who then ufes Abundance of Contrivances and Efforts to get rid of it, friking againft it with her Tail, fixing the End of her Tail thereto and darting her Body forwards, with feveral other very odd Motions not cafy to be defcribed.

A young one almoft difengaged from the Shell, being faftened thereto only by the Tail, is fhewn fig. 9. 6. The Subject from whence this Picture was exactly taken, during the Performance of all the Particulars above defcribed; had alfo another Embrio, c, adhering tồ its Shell.

There Animals have one, two, three, nay, fometimes even four or five of thefe young

Animalcules with Shells and Wbeels. 301

ones hanging to them: but they are frequently without any at all, like the Figures 4 and 8.

The third Species of cruftaceous Animals with Wheels, fhewn fig. 11, 12, 13. is rèmarkably different from the former two in the Shape and Fafhion of its Shell, which extends on either Side a curved or hooked Procefs, that bending towards the Tail, inward, ends in a fharp Point, and is within a fourth as long as the Tail itfelf.- The Head Part of the Shell differs alfo from thore before defcribed, in the Order and Difpofition of the Spicula, of which it has four longer and two fhorter ones, placed as in fig. 13 . where by the Body's being contracted and drawn confiderably within the Shell, as frequently is the Care, the Top of the Shell is perfectly diftinguifhable, and its Spiculac plainly feen.

The Tail of this Creature has the like Figure, Articulations and Motions with that of the other Species : and its Body may properly be divided in the fame Manner as theirs, though in Shape it appears fomewhat different through the Shell, which the Drawings exprefs fufficiently without any particular Defcription.

From its Head two Arms or Branches are frequently extended, and the circular End of each is furnihed with a Border of Fibrilla, feeming at fome Times to have, a very quick

302 T̈be Water-Flea with brancbed Horns. quick Vibration, and at others a rotatory Motion, occafioning a rapid Current in the Water.

Their Ova are carried at the Tail End, either faftened to the Tail itfelf, or to the Proceffes of the Shell, as at fig. 12 . One, two, or three are the Number ufually hanging to them; but fome, though very few, have four or five. The Young burft their Integuments, and are hatched very probably Jike the Species before defcribed; but having never had the Pleafure of feeing them do fo, I can fay nothing more to this Part of their Natural Hiftory.

C H A P. IX.

The Water-Flea with branched Horns.

ATrue Figure and Defcription of this little Creature having never yet been publifhed amongtt us, what follows I hope may prove acceptable.

The Name given it by Swammerdanl, of Pulex aquaticus arborefcens, I chufe to tetain here, as expreffing aptly enough its Motions and Appearance. -It is found in Refervoirs of Rain Water, in Bafons, Ponds, Ditches, $\mathcal{B C}^{\circ}$. where the Water is not often renewed; and that fometimes in fuch Abundance, as

The Water-Flea with branched Horns. 303

by its red Colour to make the whole Surface of the Water appear like Blood *:

This Animal is cruftaceous, being covered with a thin oval Shell in the Manner of a Lobfter or Cray-Fifh, but with this Difference, that the Shell being open a good Part of its Length, the Animal can thereby put out and draw in its Legs and Part of the Body when it pleafes.

The upper Part of the Shell bears a near Refemblance to the Head of a Bird, having a Charp-pointed Procefs very much like a Beak or Bill, but intirely fixt and immoveable; and the Eye being placed near thereto, in a Situation much correfponding with that of a Bird, adds much to the Refemblance. This Eye feems compofed of feveral fmall Globules, though not pearled as thofe of Land Infects, but all contained in one Integument, wherein they appear to be in fome Degree moveable. The Animal has two of thele Eyes: but as he always lies on one Side when placed in a Drop of Water to be examined by the Microfcope, no more than one can then be feen; which induced Mr . Bradley to imagine it had only one Eye, and from thence to call it Monoculus; but whoever beholds the monftrous Picture that

[^40]$3 \otimes 4$ The Water-Flea with brancbed Morits,
Writer has given of this Infect in his Book on the Works of Natture, will be little furprized at any of his other Miftakes.

A little below the Eyes, two Horns, which are moveable, are joined to the fhelly Head; their Infertion being in the Manner of Ball and Socket. Each of thefe Horns comes out in one fingle Trunk at firft, but divides foon into a Pair of Branches, each Branch having three Joints. A fmall Hair Briftle grows out from either of the two firf $\mathrm{Ar}-$ ticulations, and three pretty long ones from the Extremity of the laft.

Juf beneath the Infertion of thefe Horns a long Kind of Gut runs down almon the Length of the wholc Body, where it joins to a Part which in Shape very much refembles the Toe of a Bird, having a large Claw or Talon at the End thereof. The Creature can move this Part beyond its Shell with a great deal of Force, and by that Means, as I apprehend, performs its fpringing or leaping Motion.

It has eight Legs or Fins befides this, which, when the Creature lies otherwife ftill, are neverthelefs in a continual and nimble Motion, forming a brifk Current of Water, like that of many other Animals. They are alfo very ferviceable in fwimming, and affift in its circular Motion, of which I hall prefently fpeat.

Behind

The Water-Flea with brancloed Horns. 305
Behind the abovementioned Gut, and as it were detached from the reft of the Body, the Heart is placed, and may be feen dilating and contracting, alternately, with a very regular and diftinct Syitole and Diaftole.

The lower Part of the Shell terminates in a long Spike or Tail, which is without Motion, but thickly fet with fix Rows of fhort Atrong Spines, making its Appearance like the prickly Horn or Snout between the Eyes of Lobfters, Cray Fifh, Shrimps, \mathcal{c}.

Swammerdam has very judicioufly obferved * (what every Body who examines it carefully will difcover to be true) that this Animal has three different Kinds of Motion. The firft is a fmooth and even fwimming, whereby it carries itfelf horizontally along in the Water. The fecond is a fudden flkipping or leaping, much refembling that of a Flea. And the third is, when lying at the Bottom of the Water, it turns its whole Body round as it were on a Center, with a very brifk Rotation, by Means of its fmall Legs or Fins.

As no Creature lives without its Tormentors, this is very much infefted by the Shelled Wheel Animal already defcribed, Page 298, and fhewn in the Plate with this, fig. $7,8,9$. Both thefe Infects are in great Abundance frequently in the fame Water; and when that

$$
\text { * Hir, Gen. des Infectes, p. 69, } 70 .
$$

is the Cafe, it is not uncommon to difcover five or fix of the Sleclled wheel Animals fartened by their Tails to the Shell or Horns of the Water-Flea, and caufing to it feemingly a vaft deal of Uneafinefs; nor can they be driven away, or fhaken off, by all the Mosions and Efforts the Creature makes ufe of for that Purpofe.
CHAY. X.

The Bell-Flower Animal, or Plumed Polype.

1Was firft informed of this Creature by my induftious Friend Mr. William Arderon, towards the End of the Year 1743, as his Letters fhew ; and in the Year 1744, it was taken Notice of by Mr. Trembley, who gave it, in his Memoires, the Name of the Polype at Pannache, or the Plumed Polype. My Friend, who difcovered it in his Searches for the Polype, called it the Bell-Flower Animal; and after favouring me with his own Obfervations, fent me come of the Creatures themfelves, which living with me feveral Months, I had fufficient Time and Opportunity to examine and confider them. And as there feems fome little Difference between thofe in my keeping, and what Mr. Trembley defcribes, they may poffibly be of another Species, though of the fame Genus.

This.

This is one of the many Kinds of Water Animals which live as it were in Societies: of which fome Sorts hang together in Clufters, but can detach themfelves at Pleafure; whilft others again are fo intimately joined and connected together, that no one feems capable of moving or changing Place without affecting the Quiet and Situation of all the reft. But this Creature forms as it were an intermediate Gradation between the other two, dwelling in the fame general Habitation with others of its own Species, from whence it cannot intirely feparate itfelf; and yet therein it appears perfectly at Liberty to exert its own voluntary Motions, and can either retire into the common Receptacle, or pufh itfelf out from thence and expand its curious Members, without interfering with or difturbing its Companions.

They dwell together, from the Number of ten to fifteen (feldom exceeding the latter, or falling fhort of the former Number) in a filmy Kind of mucilaginous or gelatinous Cafe; which out of the Water has no determined Form, appearing like a little Lump of Slime, but when expanded therein, refembles nearly the Figure of a Bell with the Mouth upwards ; and is ufually about the Length of half an Inch, and one Quarter of an Inch in Breadth or Diameter. This Cafe being very tranfparent, all the Motions of its Inhabitants may be difcerned through X 2
it diftinctly. It feems divided, internally, into feveral Apartments, or rather to conttain feveral fmaller Sacculi, each of which inclofes one of thefe Animals. The Openings at the Tops of thofe Sacculi are but juft futficient to admit the Creature's Head, and a very fmall Part of its Body, to be thruft out beyond them, the reft remaining always in the Cafe. The Animal can however when it pleafes draw itfelf intirely down within the Cafe, which is an Afylum to fecure it from its Enemies (for it is mot unlikely many of the larger aquatic Infects prey upon it) and a fafe and agreeable Retirement wherein to perform the Functions of Digeftion, Sleep, and the other neceffary Calls of Nature. This Cafe it can, I fay, retire into at Pleafure ; and it never fails to do fo when any fudden Motion of the Water, or of the Verfel it is in, difturbs it : as alfo when it has feized with its Arms any of the minute Infects which ferve for its Food.

The Arms are fet round the Head to the Number of forty, having each the Figure of a long f, one of whofe hooked Ends is faftened to the Head; and all together when expanded compofe a Figure fomewhat of a Horfe-fhoe Shape, convex on the Side next the Body, but gradually opening and turning outwards (fee fig. I 9 and 20, Plate XII.) Io as to leave a confiderable Area within the outer Extremities of the Arms. And when thus
thus extended, by giving them a vibrating Motion, the Creature can produce a Current in the Water, which brings the Animalcules, or whatever other minute Bodies are not beyond the Sphere of its Action, with great Velocity to its Mouth, whofe Situation is between the Arms: where they are taken in, if liked, or elfe, by a contrary Current, which the Creature can excite, they are carried away again : whilft at the fame Time other minute Animalcules or Subitances, that by lying without fide the Inclofure made by the Arms are lefs fubject to the Force of the Stream, are frequently feized by them : for their Senfe of Feeling is fo exquifite, that on being touched ever fo flightly by any fuch little Body, it is caught immediately and conveyed to the Mouth. However, one may obferve the Creature is fometimes difappointed in its Acquifition : for after drawing down one of the Arms fuddenly inwards towards the Mouth, it may be perceived flowly extending itfelf again, without the Creature's retiring into its Cafe; which it fails not to do on meeting with any thing worth its while.

The Food is conveyed immediately from the Mouth or Opening between the Arms, through a very narrow Neck, into a Paffage feemingly correfpondent to the Oefophagus in Land Animals; down which it pafees into the Stomach, where it remains for fome

$$
X_{3} \quad \text { Time }
$$

Time, and then is voided upwards, in fmall round Pellets (which at firft I imagined to be its Eggs) through a Gut, whofe Exit is near the Neck, where it was firft taken in.

The Body of this Animal confints of three Parts or Divifions, in the uppermof whereof all the aforementioned Inteftines are contained, though they are not to be diftinguifned when the Creature is hungry ; but after it has eaten they become diftended and opake, and may very plainly be difcovered. The other two Divifions (the lowermoft of which I take to be fixed to the Bell or outward Cafe) feem of no other Service than to give the Creature Power of Contraction and Extenfion.

The Arms feem not able like thofe of the common Polype to contract or fhorten themfelves; but inftead thereof, when the Animal retires into his Cafe, they are brought together in a clofe and curious Order, fo as eafily to be drawn in. Their general Figure, when expanded, is that of a Cupz whore Bafe and Tup are of an Hor fe-fhoe Form ; but they prefent fonctimes a very different Appearance, by feparating into four Parts, and ranging thomfelves in fuch Sort as to reprefent four feparate Plumes of Feathers. -See fig. 22.

I could never difcover any Eyes they have, and yet find fome Reafon to believe they fee: for on being fet in the Light of the Sun_{2}

Sun, or a Candle, or brought out of the Dark into the Day-light, though contracted before and retired into the Bell, (as indeed they generally are when in the Dark) they confantly extend their Arms for Prey, and thew evident Signs of being pleafed.

Befides the particular and feparate Motion each of thefe Creatures is able to exert within its own Cafe and independent of the reft, the sibole Colony has together a Power of altering the Pofition, or even of removing from one Place to another the Bell or common Habitation of them all. 'Hence this Bell is feen fometimes ftanding perfectly upright (as fig. 15 and 17.) fometimes bending the upper Part downwards (as fig. 16.)

It has been mentioned already, that between ten and fifteen of thefe Animals dwell together, as it were a little Community, in one Bell-like Cafe or common Habitation : but their Number increafing, this Bell may be obferved to fplit gradually, beginning from about the Middle of the upper or anterior Extremity, and proceeding downward towards the Bottom, till they feparate at laft intirely, and form two compleat Colonies, independent of each other; one of which fometimes removes itfelf to another Part of the Veffel. The Manner how the fingle Animals propagate, I have never been able perfectly to difcover, though there is fome Reafon to conjecture it may be by the X_{4} Means

312 The Bell-Flower Animal.
Means of Eggs; as fmall opake Bodies of a conftant and determinate Figure are fometimes feen lying in their Bells: and unlefs they are Eggs I know not what to make of thein. Their Shape is nearly that of a Weaver's Shutlle, being compofed of two circular Arcs, whofe concave Parts are towards each other. The Breadth is about two Thirds of the Length, and in the Middle of each a circular Spot appears more opake than the reft, which poffibly may be the Embrio. But as I never faw any of them come to Perfection, I can make no farther Judgment of them than what their Situation and Form fuggefts. They are reprefented fig. I 5.a.

The Bells, or Colonies of thefe Animals, are to be found adhering to the large Leaves of Duckroeed and other Water Plants ; and may eafieft be difcovered, by letting a Quantity of Water, with Duckzoced in it, ftand quietly for three or four Hours in Glafs Veffels, in fome Window, or other Place where a flong Light comes: for then, if any are about the Duckweed, they will be found, on careful Infuection, extending themfelves out of their Cafes, fpreading their Plumes, and making an elegant Appearance.

They are extremely tender, and require no little Care to preferve them: their moft. general Diforder is a Kind of Slime or rather Mouldinefs, which will fometimes envelope
velope them in fuch a Manner as to prove mortal. The beft Way of curing this is, by gently pouring a large Quantity of Water (perhaps two or three Quarts) into the ${ }_{W}$ effel where they are kept, and letting it run off flowly: by which Means the Sliminefs will gradually be loofened and carried away with the Water.

As to Food, if frefh Water be given them daily, they will find fufficient for themfelves; and it is dangerous to try any other Way of feeding them, for the fmalleft Worms, or other vifible Infects one can think of giving them, will tear their delicate Frame in Pieces.

Fig. I 5. reprefents one compleat Colony or Bell, ftanding erect, with all the Animals out of their Cafes, and their Arms extended for Prey : exhibiting all together a very pretty Appearance. Here a fhews the opake Bodies fuppofed to be Eggs.

Fig. 16. Shews all the Creatures withdrawn into their Cells, and the End of the Bell inclining downwards.

Fig. 17. the Bell erect, with only one of the Animals coming out, in order to fhew its Connection with the Bell.

Fig. 18. reprefents a Colony dividing.
Fig. 19. one compleat Animal, greatly magnified, to fhew its feveral Parts more diftinctly. $V i z$.
a, the Horfe-fhoe-figured Head. b, b, the Arms feen from one Side.
c, the narrow Neck.
d, the Oefophagus.
e, the Stomach.
f, the Gut or laft Inteftine, through which the Food paffes, after being digefted in the Stomach.
g, the Anus, where the Fæces are difcharged in little Pellets.
b, i, that Part of the Bell which furrounds the Body of the Animal, and clofes upon it when it retires down. Fig. 20. The Head and Arms feen in Front.

Fig. 21. The Head and Arms clofing together, and difpofing themfelves in order to be drawn down into the Bell.

Fig. 22. The Arms arranged in a Fea-ther-like Appearance.

C H A P. XI.

The S A T Y R.

IFrequently have taken Notice, in feveral Infufions of Vegetables, of a little cruftaceous Animalcule, whofe Picture is given fig. 25 th of this fame Plate XII. The Shell of this Creature is fo exceedingly tranfparent, that unlefs great Attention be given it cannot be difcerned at all. It feems to cover the Back only of the Animal: its Bel-
sy, and under Parts, appearing to have no Shell. The Middle of the Body, containing the Bowels, (whofe periftaltic Motion may be difcerned) is fomewhat opake, and in the Shape of a Bottle with the Mouth downwards ; the Sides are tranfparent, and thew many Veffels running through them. Four Legs, or Fins, divided near-half their Length, and ferving either to walk or fwim, iffue from the opake Part, and reach beyond the Edges of the Shell: and two thicker and fhorter Limbs, pointing directly forwards, each of them armed with a Charp Claw, are placed at the Head-End, and probably are the Inftruments wherewith it takes its Prey. On each Side of the narrow Part of the opake Body, at fome little Diftance therefrom, one fees a round black Spot, the Ufe whercof Idon't pretend to guefs. - This Animal is brifk and vigorous, fwimming fometimes with great Swiftnefs through the Water, at other Times it creeps along at the Bottom of the Drop, and now and then fkips nimbly like a Flea. It often fhews itfelf in Profile, as reprefented fig. 23.

Monfieur Foblot (whofe Imagination has frequently exaggerated the Figures of Animalcules to be found in Water,) tells us, that he once difcovered, in an Infufion of the Anemony, an Animalcule having on its Back a Mafk or exact Reprefentation of a Satyr's Face; and he gives a Picture fuitable to that

Idea. But, making a confiderable Allowance for the Fruitfulnefs of his or his Painter's Fancy, I think it not unlikely that the Subject we are treating of might have been the little Animal he faw: for the two black Spots, with the Part of the Bowels that comes between them, have fome Refemblance of a Nofe and Eyes; the two Points, which terminate the Shell at the Tail-End, appear fomething like a piqued Beard; the Diftance between may pafs for a Mouth, and the Whole put together, might by a true Lover of the Wonderful, be worked up to the extravagant Likenefs of a Satyr's Face. But this is mentioncd only by the by, and as a Reafon why I give it the Name of Satyr.

C H A P. XII.

Threc aquatic Animals defcribed.

TOWARDS the End of September, in the Year 1743, fome Water taken from a Ditch at Tooting in Surry, (wherein many Polypes of an exceeding fmall Kind had been difcovered, by my worthy, inquifitive, and obliging Friend the Rev. Dr. Henry Miles, F. R. S.) was fent to me in a Phial, in order to be examined. And whilft I was viewing the Pclypes with the Microfcope, I
had

Aquatic Animals.

had the Pleafure of finding three different minute aquatic Animals, which I had never before obferved.

The firt of there feemed to the naked Eye like a very fmall and flender Worm, of about one Third of an Inch in Length: but the Microfonpe foon fhewed its real Form, and the Singularity of its feveral Parts, in the Manner they are reprefented Plate XII. fig. 24.

From the Fore-part of the Head of this Animal a long Probofcis, Horn, or Snout was extended, moving itfelf every Way with great Readinefs, and iffuing from that Part of the Head where the Mouth fhould be; which anterior Part changed its Appearance according to the Motions of the Inftrument, fometimes extending itfelf and becoming more flender, and at other Times fhortening itfelf and growing thicker. About the Head it had fomewhat of a yellowifh Colour, but all the reft of it was throughout perfectly colourlefs and tranfparent, except the Intettines, which were confiderably opake, and difpofed as in the Picture. In them alfo a periftaltic or internal Motion was diftinctly vifible. Along its Sides were feveral Papilla with long Hairs growing from them: its Tail ended very bluntly: it had two black. Eyes, and was extremely nimble.

I found only this fingle Animal of its Kind, from which I drew up the above Re-
marks at the Time of viewing it, when its Figure was likewife carefully taken; but foon after I had the Favour of a better Account in a Letter from Dr. Miles, who had Plenty of them under his Infpection: and this I fhall lay before the Reader in the Doctor's own Words.
"The Worm found in the Water in which
"I met with the Polypes in this Neighbour-
" hood is of various Sizes, from about ${ }^{\frac{1}{4} \%}$ of an
"Inch to half an Inch, and about the Thick" nefs of the Worms we feed the Polypes
" with. It is tranfparent, excepting in the "Middle where the Gut runs, which the
*Fæces make look of a dirty Colour, but it
" has no Rednefs as the Worms have, and "for that Reafon might be reckoned a" mongft the Infects which fome have "erroneoufly called exanguious, fince our "Eyes, affinted by Glafies, fhew them to "have Blood : as I fhall prefently tell you " this has.
"The Form of it (when magnified I " mean) refembles in many Particulars fome " of our Catcrpillars that feed on Vegeta"bles. It is infected as they are, and it is " hairy: here and there a little Tuft of "Hairs, and in other Places a fingle Hair "regularly growing out of the Sides, as I "have attempted to reprefent in the Fi-
"gure. I faw the periftaltic Motion of "the Gut, and once faw it exclude Frese, " three
" three or four Clufters together, which re" fembled exactly thofe of our common "Caterpillars, or of the Silk-worm Cater" pillar. But the moft remarkable Thing " in this Creature is a Kind of Horn or Feeler " which it feems to carry in its Mouth, and " may be juft feen by the naked Eye if " your Water be clear. 'Tis in the larger " ones about $\frac{1}{\pi}$ Inch long. This (I know " not what to call it) it waves to and again " as it moves in the Water, or when it " creeps up the Side of the Glafs; which " it does fomewhat like a young Leech, but " without contracting its Body fo much, and " rather in the Manner that Caterpillars do. "I have not been able to learn, though "I have viewed it a long Time together, " whether it gets any Food with this Horn, " nor can I find whether it be hollow : but " I am certain 'tis not pointed, but rather " blunt: : inor have I ever feen it contracted " any thing confiderably.-I muft not omit " to tell you, that'tis a very tender Crea" ture; for in taking up the firft I viewed " with a Quill, as we do the Polypes, by the "s Side of the Glafs, I injured it fo much, " that it was nearly cut in two, and its " Horn came off, after it had been a little " while in the Drop of Water upon the "Slip of Glafs. I was glad of this laft Ac"cident, as it gave me an Opportunity of " obferving the Horn or Feeler in a better "Manner
"Manner than I could otherwife have done;
"for hereby it appeared to me to have grown
" into the Fore-part of the Head or Month,
"* and to have been placed (as fonie Eones
" are) in a Socket, the End next the Head
" feeming claviculated or clubbed, and con-
"fiderably bigger than the other: the Head
"alfo in the Place where this Horn had
" been inferted was left with a Hollow fuit-
"able to fuch Articulation. I am doubt-
"f ful whether the Creature can contract this
"Horn or not, nor can I tell whether there
" be any Communication between it and
"t the Entrails. I took Notice that in or-
"der to wave it about confiderably it con-
" tracted its Head a little, as if to hold it
" fafter and have more Command of it ; and
" indeed the Head refembles a Sort of For-
"ceps grafping this Feeler at the thick " End.
"The faid Horn or Feeler has no" thing remarkable in its Texture, but ap"pears fmonth and tranfparent, without " any of the Afperities that we find on the "Arms of the Polype. I hall only add, "s that the Gut runs vifible from the Head " 6 to about $\frac{1}{20}$ of an Inch of the Tail, where "it ends infenfibly, for without a good " Magnifier you cannot difcern its End, but "it feems to be refolved into the Body of " the Worm. The Tip of the Tail is very "s tranfparent, and there I faw with great " Delight

Aquatic Animals.

is Delight the Circulation of the Blood in is the Middle, running to the Gut, as it * feemed, and lofing itfelf thereat, by reafon " of its Opacity.-2uarenda. What is 's the Ufe of this Horn or Feeler? What "Food does the Creature eat? One would or think nothing taken in by the Horn, if " it be bollow, becaufe the Fæces are fo " grofs : if not, how does it take its Food? "And what is it in its mature State ?"

The fecond Sort of Animal I difcovered in this Water was about a Line in Length, having a large Head, with two black Eyes in Sockets confiderably projecting, and pretty long Antenna. Its Head, Body, and Tail, were divided like thofe of the Bee or Wafp Kind : from the End of the Tail iffued three long Branches befet with Hairs, and each appeared fomewhat like the Stem of a Peacock's Feather : they could feparate more or lefs, be brought together, or move in any Direction that fuited the Conveniency of the Creature. It had fix Legs, which ferved either to fwim or creep, with Claws at the End of each. The Head, Body, and Tail, were covered all over with a Sort of Hair or Down, and under the Tail were a Couple of moving Parts like Fins, wherewith it feemed to guide its Courfe in fwimming. It was extremely agile.

Plate XIV. N• 7. A. reprefents this

 Animal as viewed by the Microfcope.> Vol. II.

The

The Tail Part more enlarged, with its under Side turned upwards to fhew the Fins, and its three Branches difplayed, is Chewn at the Letter B.

The third Sort of Animal, whore Figure may be feen in the fame Plate at M , had an odd Head, flattifh before, without any Appearance of Eyes : a Body fomewhat opake, and a Tail that could divide occafionally. From about the Middle of the Body a very thin Membrane was extended, on each Side, as low as the upper Part of the Cleft in the Tail; this was moveable, very tranfparent, and ferved as a Fin in fwimming. It was very minute, and fwam along with a direct progreffive Motion, very fmooth and regular, but not faft. Sometimes it would change its Figure, and appear fomewhat crooked and triangular, in the Manner fhewn at N .

C H A P. XIII.

The Globe Animal.

IN the Month of 7 uly 1745 , three Phials full of Water were fent to me from Yaimouth, by Mr. Fofeph Greenleafe, having in them feveral Kinds of Animalcules unknown to me before. Some of the larger Kinds died in their Paffage, occafioned I fuppore by the Jolts they received, and a

Deficiency

Deficiency of Air; the Phials being corked clofe, and too full of Water to leave them Air enough for Refpiration. One kind, however, fuffered very little, but when examined by the Microfcope was perfectly alive and vigorous, and fo numerous in one of the Phials, that the Water might be perceived to fwarm with them, though their Size was much too fmall for the naked Eye to diftinguifh otherwife than as moving Points. They all died with me in two or three Days, but in that Time I had Opportunities enough to examine them, very carefully, and take a Drawing of them. My Friend, Mr. Arderont of Norwich, fent me alfo, towards the End of the fame Summer, fome little Account, with a Drawing of the fame Animalcule, of which he had accidentally difcovered a fingle one. in a Drop of Water.

Fig. 27. reprefents this very fingular minute Water Animal, as it is feen before the Microfcope. Its Form feems exactly globular, having no Appearance of either Head, Tail, or Fins. It moves in all Directions, forwards or backwards, up or down, either rolling over and over like a Bowl, fpinning horizontally like a Top, or gliding along fmoothly without turning itfelfat all. Sometimes its Motions are flow, at other Times very fwift: and when it pleafes, it can turn round (as it were upon an Axis) very nimbly, without removing out of its Place. Its Y 2 whole

324 Eggs of the mall Frejb-W'ater Snail,
whole Body is tranfparent, except where the circular black Spots are neewn in the Picture ; of which Spots fome had fix or feven, fome one, two, three, four, or five, and others none at all. Thefe probably are its Eggs or young ones: but the fhort Time they were with me, prevented my coming to a Certainty as to this Particular. The Surface of the whole Body appeared in fome as if all over dotted with little Points, and in others as if granulated like Shagreen: but their more general Appearance was, as if befet thinly round with fhort moveable Hairs or Briftles; and 'tis not improbable all their Motions may be produced by fome fuch Inftruments, performing the Office of Fins.

C H A P. XIV.

Eggs of the fmall Freflo-Water Snail, and Animalcules adbering to them.

THE Group of Figures, Plate XIII. N° 1. A reprefents the magnified Appearance of a Congeries of the Spawn or Eggs laid by a Water Snail: which Congeries of Eggs, as feen by the naked Eye, is. Jhewn at the Letter B.

The Parent Snail is exhibited of its natural Bignefs, C I ; its Back upwards toward the Eye,

.
$+2$

$$
x-2
$$

$$
41+
$$

$$
4
$$

 (I)
 -

4

and Animalcules adhering to them. 325
Eye, and its Body extended beyond the Shell, in the Action of creeping from Place to Place.

The fmall Snail is turned upon its Back, C 2; that the true Form and Opening of the Shell may the better be underftood.

I have frequently kept Numbers of there Snails, for many Months together, in a large Glafs Jar, with Polypes and other Water Animals: and 'tis very common for them to faften their Spawn, in little Maffes, againft the Sides of the Glafs, where the Eggs hatch in about three Weeks or a Month's Time.

The Spawn, when firft depofited, appears to the naked Eye like a tranfparent Jelly; but if examined by the Microfcope, one fees in it Numbers of fmall and exceedingly pellucid oval Bodies, at little Diftances from one another, enveloped in a gelatinous Subftance; having each of them towards one of its Extremities a very minute dark Speck, wherein, if carefully examined by the greatelt Magnifier, a Pulfation may be difcerned.

This Speck will be found to grow larger from Day to Day, and to become a perfect Snail, with its Shell compleat, feveral Days before it burfts through its Integuments. When the Eggs are about a Week old, the Embrio Snail may be difcerned in its true Shape, turning itfelf very frequently within the fine Fluid in which it lies: and the Heart

326 Eggs of the fimall Frefh-W ater Snail, is then a moft agreeable and amazing Spectacle, fhewing itfelf very diftiuctly, and refembling a little oblong Bladder, much lefs at one End than the other: the Pulfation proceeds under the Eye with great Exactnels and Regularity, and the Syftole and Diaftole of this Vefiel are nearly equal to thofe of the human Heart, fomewhat more than fixty Pulfations being performed in a Minute, as I have found by feveral Trials, keeping my Finger at the fame Time on my own Pulfe, which ufually beats two or three Strokes more. The Heart is large in Proportion, and may be always feen, until the Animal increafing in Bulk and becoming confequently more opake, in fome Pofitions it hardly can be perceived: but as the Animal frequently turns itfelf within the Egg, a little Patience will bring the Heart in full View again ; and that as long as the Embrio continues within the Egg. Nay, even after it is hatched, the Heart may be difcovered for fome days through the traniparent Shell *.

The general Plan of Nature is fo uniform, in the Production of living Animals, though with fome little Variations as to the Manner of its Execution, that from what we are able to difcover in the very tranfparent Eggs

[^41]of this little Creature, fome reafonable Conjecture may be formed of what happens in thofe of much larger Kinds.

According to the ufual Order of Nature, every Embrio of an Animal is lodged for a Time within the Uterus of the Parent, inclofed in a Cafe or Egg, whofe outer Coat is either hard and Chelly, or tough and membranaceous, affording a proper Bed and Covering to preferve it from external Injury.

In Animals that are oviparous, this Egg is excluded out of the Body of the Parent, fome confiderable Time before the Embrio has attained a Size and Strength fufficient to endure being expofed to the open Air without Prejudice: during which Time, it takes in Nourihment, and its Limbs acquire a continual Growth, from proper Juices in which it floats, and wherewith the Egg is replete. For the Egg, between the Time of its being laid, and that of its hatching, can receive no other Benefit from the Parent, than what the natural Heat of her Body can afford it: And Experience teaches that the like Degree of Heat, fupplied by any other Means, with the fame Conftancy, will be of equal Service *.

On the contrary, in viviparous Animals, the Egg is retained in the Uterus of the $\mathrm{Pa}-$

[^42]$$
\text { Y } 4 \text { rent, }
$$

328 Confiderations on oviparous

rent, till the Embrio having attained a certain State of Maturity, endures Confinement no longer, burfts open the Integument, Cafe, or Shell that inclofed it, and iffues therewith from the Body of the Parent: until which Time the Embrio receives its Nourinment from the Blood and Juices of the Parent, which are conveyed into the Body of the Embrio, by cértain Vefiels of the Parent that inofculate with correfpondent Veffels of the Embrio, and at the Birth become fepasated therefrom.

Hence it appears probable, that the original Principle of Lile, the gradual Expanfion and unfolding of the Members, and the Progreffion to wards Maturity and Birth, are nearly the fame, whether the Embrio be hatched witbin the Body or zoithout the Body of its Parent; which feems to be the chief Difference between viviparous and oviparous Production. But to proceed.

For fome Days after the Water Snail has laid its tranfparent Egg, the Microfcopic Speck of Life, wherein the tender Limbs and Rudiments of the Animal are moft wonderfully folded up and contained, has no other Appearance of Life than only a languid Pulfation, but juft difcernible by the belt Glafies and the moft curious Eye. As this Speck increafes in Bignefs, it exhibits, gradually, the Figure of a minute Snail, and acquires an Ability of moving itfelf very flowly,
flowly. After this, its Size and Motion becomes every Day more confpicuous, its firal Revolutions fhew themfelves more difir tinctly, its Form becomes more perfect, a Shell, unconceivably delicate, is produced over its tender Body: it now occupies a confiderable Part of the Egg, turns itfelf vigoroufly, and even creeps within it, and in due Time breaks it, and iffues forth.
'Tis not unlikely this is Nature's conftant and regular Courfe in the Production of all Creatures that are oviparous; and that the proceeds nearly in the fame Manner to promote the Growth and Birth of the Embrio in the Human Race, as well as in all other Creatures that we term viviparous, feems to me no lefs probable.

After this Digreffion, which I was infenfibly led into, I return to take Notice, that the Eggs which the Drawing exhibits were about a Fortnight old; at which Time the young Snails were of fuch Size, in Proportion to the whole Room contained within the Eggs, as thofe marked c, c, c, may pretty nearly ihew.

The other aquatic Animalcules reprefented as hanging about this Parcel of Eggs, are no other than what were really found adhering to it when it was viewed by the Microfcope: and they were exactly fituated as in the Picture, which was taken without the leaf Exaggeration. Their extreme Minute-
nefs rendered them abfolutely invifible to the Eye, for which Reafon 110 Attempt is made to fhew them at the Figure B.

A little Colony of Bell-Animals appear at d : their long Tails are faftened to the gelatinous Subftance wherein the Eggs are laid; they ftretch themfelves out, and play vigoroufly in the Water; numberlefs Fibrilla round the Mouth of each Bell agitating the Water to a confiderable Diftance.

More of the fame Bell-Animals are feen at e, curling their Tails in the Manner of a Screw, and pulling themfelves back with a fudden Jerk, as they conftantly do when difcompofed by any Thing. But when all is quiet they flowly extend again in the Water, as far as their Tails permit. - Thefe Bell-Animals are found very frequently adhering to little Bits of Stick, Leaves, Stones, or other Matter that have lain fame Time in ftagnant Water, either in the Ditches abroad, or in Glaffes kept in the Houfe with Infufrons or Water-Animals: and their Motions are very entertaining *. Many of them are fometimes feen adhering by their Tails to one another.

On both Sides this Parcel of Snails Eggs are fhewn, in different Attitudes, feveral little Creatures, of a Kind which I have been ufed to call the lumnel-Amimal. They fatten by their Tails to whatever comes in their

- Vid. Microfope niade enfj, p. gr.

Funnel-Animals.
Way, and then opening their anterior End, exhibit a wide Mouth fomewhat of a \ddagger unnel Form, though not compleatly round, but having a Sorl of Slit or Gap that interrupts the Circle. The Lips or Edges of this Opening are furnifhed with Multitudes of little Fibrillæ, which by their brifk and continual Motions excite a Current of Water, bringing with it Abundance of minute Particles of Niatter and living Animalcules, which they fwallow greedily.-One of them in the Pofture above defcribed may be feen at the Letter f.-They can fafhion this Mouth or Opening into the feveral Appearances fhewn in the Picture.

If any Thing touches or approaches very near them, they fhrink back and contract, as at the Letter g.

Thefe Funnel-Animals never keep together in Clufters, but live feparately and independent of one another, fwimming freely through the Water, feemingly in fearch of Prey, and after a while fix themfelves to any Thing they meet with.

Mr. De Reaumur and Mr. Trembley diftinguifh the little Creatures I have been defcribing by the Name of T Tunnel-like Polypi: $^{\text {a }}$ and the laft-mentioned Gentleman, to whofe

[^43]indefatigable Induftry we are fo greatly obliged for many curious Difcoveries of feveral Kinds of what he calls Polypi, has, by the Help of an ingenious * Contrivance to fix the Magnifiers of his Microfoope clofe to the Glafs Veffels where he keeps thefe Creatures, found Means to obferve the very extraordinary Manner of their Increafe; which I fhall take the Liberty to prefent the Reader, from the Account given by himfelf to the Royal Society, and printed in the Pbilofopbical Tronfactions, $\mathrm{N}^{\circ} 474$.
"Thefe Tunnel-like Polypi do alfo mul" tiply by dividing themfelves into two, but " they divide themfelves otherwife than the "Cluftering Polypi: they neither divide lon" gitudinally, nor tranfverfely, but floping " and diagonal-wife. Of two Tunnel-like "Polypi, jut produced by the Divifion of " one, the firtt has the old Head, and a new "pofterior End; and the other the old po" 1 terior End, with a new Head.
" I fhall call that which has the old Head, "Superior Polypus; and thet which has
" the new Head, the Inferior one.
"The firt latticulars obfervable in a
"T Tunnel-like Poiypus that is going to divide, "are the Lips of the Inferior Polypus; I mem
"thofe tranfparent Edges that are fo con-

[^44]" fpicuous in the Polypi when entirely "formed. Thefe new Lips firft difcover " themfelves upon the Polypus that is go"s ing to divide, from a little below the old " Lips, to about two thirds of the Length "s of the Polypus, reckoning from the Head:
" but thefe new Lips are not difpofed in a " Ptrait Line, according to the Length of
" the Polypus, but run floping near half
"Way round about. Thefe Lips are known " by the Motion in them, but which Motion " is at firt very flow. That Portion of the "Body of the Polypus, that is bounded " by thefe new Lips, then gathers up it"6 felf: the new Lips infenlibly draw toge" ther and clofe; whereby there forms "itfelf, at the Side of the Polypus, a Swell"ing, that is foon found to be the Head " of the new one, bounded by the new "Lips firft difcovered. Before this Swell" ing is grown very remarkable, one begins " to diftinguifh the two Polypi which are " forming themfelves; and when that Swell" ing is confiderably increafed, the two P_{o-} " lypi will be difcovered, no longer joined "s but by a finall Portion to each other. The "Superior Polypus no longer adheres to the "Inferior one, but by its pofterior Extremi" ty, which is ftill fixed on one Side of the "Inferior Polypus: the Superior Polypus " then begins to make Motions that feem" ingly tend to the feparating of him from "s the
" the other; and in a little Time he becomes
" quite detached, fwims away, and fixes
"r himfelf elfewhere.-I have feen one come " and fix at the Side of the Inferior Polypus, " from which he was juft before โeparated. " The Inferior Polypus remains fixed in the " fame Place, where the Polypus was, that " is now divided, and of which he was only, " the half, before the Divifion took place." The little oval Bodies at b, were inveloped in the flimy Matter of the Snail's Eggs: they appeared fomewhat opake, but without Motion, and were probably the Aurelia of fome Water Infects.

C H A P. XV. Of Clustering Polypes.

BEFORE the Reader enters on this Chapter, let me advife him to caft his Eye with a little Attention on Plate XIII. $\mathrm{N}^{\circ} 4,6,10$, and I_{3}, which will prepare him to underftand more perfectly the Account of what are here termed the Cluffering Polypes, a Name I call there little Creatures by, in Conformity to Mr. De Reaumur and Mr. Trembley, who have given that Appellation to all the different Kinds of Animalcules that are found hanging together in the Water, after the like Manner.

During

During all the Spring and Summer Seafons, but efpecially in the Months of April and May, great Abundance of there, of different Species, are to be found on the Shells or Eggs of Water Snails, on the Leaves of Duckreeed and other Water-Plants, en little floating Sticks, Straws, or whatever elfe lie upon or near the Surface of fagnant Ditches or Ponds, for they don't chufe to be at any great Depth in Water. The Reafon they have been but lately and fo little taken Notice of, is, I apprehend, their extreme Minutenefs, which renders them invifible, unlefs by a very good Light, and with Glaffes that magnify confiderably: at the fame Time an Area, fufficient to take in their whole Groups or Branches, muft come in View, or elfe no Idea can be formed of them; and we know, 'tis not many Years, that Microfcopes have been fo far improved, as to command a large and well illuminated Area by Glafles that magnify much, or to have proper Conveniences for examining Objects even in a fingle Drop of Water.

Through all the different Species of this Kind of Animal, there is an Analogy or Uniformity, as to the general Figure of their Clufters or Colonies. Each Colony feems conftantly to arife from one Stem or Stalk, which is always affixt to fome extraneous Body: This Stem divides into a. Couple of fmaller ones, each of which fubdivides in-
to another Pair, and thofe branch themfelves out again, in the fame Manner, till the Clufter is compleated. The Extremities or Heads of the fmall Stalks are the Bodies of the Animals, in the Differences of whofe Figure confifts the Variety of the Species. Being fituated in this Order round the common Stemat different Heights and Diftances, they make a very pretty Appearance, when extended in the Water; not ill refembling a Nofegay of Cowflips, or fome fuch Kind of Flowers. And one would imagine the feveral Heads and their Pedicles to proceed from one common Stem, as the Branches and Flowers of a Plant do from one common Trunk; but a contrary Progreffion takes place here : for in a Plant the Trunk produces Branches, and thofe Branches again produce Flowers; whereas the Head here is prior to the Pedicle, and the Pedicle to the main Stem, as will by and by be fhewn.

The Heads, or little Animals, (of which Multitudes fometimes are dependent from one Stem, open their anterior Ends, and play about very brikkly in the Water, as far as their refpective Pedicles will permit; but every now and then, one or other of them fprings back with a fudden Contraction, which probably may be when it has catched fomething that it retires to eat: for this they do when nothing at all offends them; but if they are made uneafy, by making the

Water, or touching them with any foreign Body, both Stem and Branches intantly contract together, and extend not again till every thing is perfectly at reft.

But though they are found thus conjoined in Colonies, each Head is a perfect Animal, and can detach itfelf from the reft, live feparately, and become the Parent of a new Colony, as moft of them do after a certain Time. All of the fame Community act after one common Law, in contracting or extending the main Stem as well as their refpective Pedicles at the fame' Time, though each can contract or ftretch itfelf out at Pleafure, without the Concurrence of the reft, as far as the Extent of its own Pedicle. When a whole Colony contracts together, the main Stem feems to pull back the feveral Pedicles, and thofe Pedicles the little Animals at their Extremities: but here the Truth is contrary to the Appcarance, for the Animals themfelves begin the Motion that pulls them back, by a fudden Endeavour to draw up their Pedicies to their Bodies, which Motion the Pedicles communicate to the main Stem, and thereby contract that alfo; fomewhat in the Manner of a Hair, which jerked fuddenly (not to break) and then let go again, flies back.with an elaftic Force. And that the Cafe is thus feems pretty certain, becaufe after one of thefe Animals breaks off from its Pcdicle, and leaves the Voi. II.

Colony, the deferted Pedicle becomes immediately defitute of Motion ; and when all of them are gone (as often happens) the Stem and Pedicles, though ftill adhering as they did before, are unable to move at all.

The main Stem grows large in Proportion to the Number of its Branches, which fometimes are very numerous; fo that it is probabiy a Continuation of all the Tails or $\mathrm{Pe}-$ dicles of the little Animals conjoined together. The Stem and Pedicles look ufually very tranfparent, and like hollow Tubes.

The feveral Species of thefe Polypes are nearly alike as to the above Particulars, and differ chiefly in the Length and Size of their little Bodies, and the Apparatus wherewith their Mouths are furnifhed. - Amongt all I have any Knowledge of, no Sort is more common than that reprefented at N^{N} vi. When the little Animals of this Species fretch themfelves out and open their anterior Ends, each of them appeais of a Bellfafnioned Figure, with a Kind of Lip turning itfelf outwards round the Rim of the Bell, which Lip is furnifhed with Numbers of Fibrille that vibrate nimbly in the Water, and caufe a Vortex reaching to a furprizing Difance, in Proportion to the Smallnefs of the Animal: which Vortex: is fhewn a a.-When great Plenty of thefe are lodged together on a Snail, Leaf, or other Body, they feem of a whitifh Colour
to the naked Eye, but before the Microfoope they appear very tranfparent, tho' with fomewhat of a brownifi Caft. Their Tails when coutracted are drawn back and difpofed in fpiral Lines, like thofe of the Bell-Animal, defcribed pag. 330.

The Species whofe Figure is given N° Iv. is much more uncommon.-Its main Stem and Branches refemble the foregoing, and fo does the general Figure of its Body, but its Mouth is remarkably different, for inftead of the very fmall Fibrilla of the laftmentioned Species, the Head of this is furnifhed with two large Arms, by the vigorous Motions of which backwards and forwards, a Stream of Water is made to pafs by its Mouth, whereby the Creature is enabled to fupply itfelf with Food, which is taken in between there two Arms. And indeed it is amufing enough to obferve the Behaviour and Artifice of this little Creature upon the Occafion; for as foon as the Prey is fwallowed down it inftantly retires to the main Stem, by contracting its Pedicle: and by flattening its Body, and bringing the Sides nearly together, it prevents any Poffibility of the Prey's Efcape. After it has continued thus contracted for fome Time, it extends ittelf very leifurely, not unlike the Bell-Animal: but in our prefent Subject the Pedicle or Tail when contracted feems as if it was flrivelled up, whereas in that it falls back in
fpiral Lines. The Figures of thefe Animaicules when playing in the Water are fhewn 22 : and it is very common, in this and every other Kind of the Cluftering Polypes, for the little Animals either to detach themfelves *, or be broken off by fome Violence from their Pedicles; the Appearance of fuch deferted Pedicles, which have no longer any Motion or Ufe, is reprefented 33 ; and their Appearance is much the fame in every other Species.

A fingle Animalcule with its two remarkable Arms is fhewn, greatly enlarged, at N° v. The Diameter of its Superficies next the Eye being magnified about 400 Times, and confequently the whole fuperficial Area of one of its Sides (which is all the Eye can command at once) 160000 Times; according to which Calculation its Bulk would be magnified $\epsilon_{4000000}$ Times.

Thofe Animalcules of the fame Species, hanging by their Pedicles, N° vir are magnificd in their Diameter about 40 Times, 1600 Times in their Superficies next the Eye, and in their Bulk 64000 Times.-All the other Species of Cluytering rolypes expreffed in this Plate are magnifice nearly in the fame

- When an Animaicule is feparated from its Clufler, it swims aboot in the Water, until it faftens its little Pedicle to fomewhat; and it can detuch itfelf again and feek fome other Situation fo long as it contirues fingle; hut after it begins to multiply, the tedicle never loofers itfelf again, none bat . dingle Animalcules being ever feen fimming.

> Proportion,

Of Chulering Polypes.
Proportion, whereby the Reader may form fome Conception of their Minutenefs : and yet, fmall as they are, they are Whales in Proportion to the Animalcules they fwallow down.
$\mathrm{N}^{\circ} \mathrm{x}$. reprefents a Colony of another Species of Chulering Polypes, two fingle ones of which magnified in the above Manner are hewn N° xir. and N° xir.

Thefe when extended in the Water exhibit a Couple of projecting Parts at their anterior End, furnifhed with Numbers of vibrating Fibrilla, that produce a Current of Water by their quick Motions, and thereby procure them Food. See Noxir.-There are fome with three of the like Projections, \&tc. See $\mathrm{N}^{\mathrm{o}} \mathrm{xi}$.
N^{\bullet} xirf. fhews a very extraordinary Species of this Kind of Animalcule, the Body whereof is much longer, its Pedicle fhorter, and the Connection of the Individuals to each other in the fame Colony is very different from all the reft: for here no main Stem is feen, but all the Pedicles are joined in one Center, round which the little Animals extend themfelves circularly, at nearly equal Diftances, and make a very pretty Appearance. But nothing relating to them is more worthy Notice, than the curious and wonderful Apparatus whereby they take their Prey, which the two greatly magnified Figures at N° xiv. will affift the Reader to underftand the following brief Defcription of.

The Body of this Animal is very tranfparent, feems to be hollowand fomewhat fhelly, and is in Diameter at the broadeft Part (which is about the Middle Way between its Mouth and Tail) nearly one fifth of its Length : it leffens from thence towards both Extremities, tapering pretty fuddenly towards the Tail End, and terminating in a long flender Tube near a Quarter of the Animal's Length. Towards the Mouth End it diminifhes more gradually, and not fo much, being no where lefs than one Half of its greateft Diameter: it widens again a little about the Mouth, which is quite open like that of a Jug or Pitcher, and feems not capable of Contraction or Dilatation, or furnifhed with any Wbeels or Fibrilla, as the Mouths of the other Species of the Animalcules are: but to make amends for fuch Deficiency, it is provided with a moveable Operculum or Cover, connected to its Body by a long Ligament or Mufcle, which extending downwards (through the Body or Shell) is affixed withinfide of it near the Tail. See a a.-This Ligament is fufficiently long to permit the Operculum to be lifted up to fome Diftance from the Mouth, in which Situation fix Fi_{-} brilloe appear placed round the Border of the Dperculum, at Diftances nearly equal. (Vid.b.) Thefe Fibrille have a vibrating Motion like thofe at the Mouths of the other Cluftering Polypes, and ferve by the Current they ex-

> Of Chuftering Polypes.
cite in the Water to hurry the Prey into the Mouth of the Animal, which ftands open to receive it ; then by hutting the Operculum down immediately all Efcape is prevented. After a little while the Operculum is lifted up again leifurely, and in Readinefs for another Capture.

When the Operculum is drawn down the Fibrilla are no longer difcoverable, and the Ligament whereby the opening and fhutting is performed appears in a flaccid relaxed State, as at a.

One of the two magnified Figures in the Plate reprefents the Animal with its Mouth open and the Cover up, as it appears when hungry; the other fhews the Cover drawn down after it has feized its Prey *.

Having defcribed thefe feveral Sorts of Cluftering Polypes, (and I make no Doubt there are many other Species and Varieties of them unknown to us at prefent) I proceed to confider their prodigious and fpeedy Propagation and Increafe, the Manner whereof is no lefs furprizing than all the other Particulars relating to them : and as to this Affair (though I have obferved them many Times myfelf with much Attention) I Chall chufe to lay before the Reader what Difco-

[^45]
344 Of Cluftering Polypes.

veries the uncommon Diligence and Sagacity of Mr. Trembley, who has applied himfelf more than any body to this Enquiry, has been able to produce: for in fuch extraordinary Cafes 'tis neceffary to make ufe of all the Evidence one can.
"A fingle Polypus (fays he) detached " from the Cluner, fwims about the Water, " till it meets with fome proper Body to " fix itfelf upon. It then has a Pedicle, but " which is not longer than the Polypus it"f felf. In the Space of 24 Hours this Stem " becomes eight or nine Times as long as " it was at firft; and it is this Pedicle which " is to become the main Stem of the new "Clunter.
" After this the Polypurs multiplies, that " is to fay, it divides and fplits itfelf in" to two lengthwife. - One firft obferves " the Lips to be drawn into the Body, whofe. " anterior Pait clofes and becomes round: " the anterior Part of the Polypus flats itfelf " afterwards by Degrees, and fpreads in Pro" portion, becoming broader as it fhortens ; " it then gradually fplits down through the " Middle, that is, from the Middle of the
"Head to the Place where the pofterior
"Ends join to the Pedicle: fo that in a little " while, there appear two feparate round "Bodies joined to the Extremity of the $\mathrm{Pe}-$ \% dicle that juft before fupported but one. "The anterior Part of each of thefe Bo" dies
" dies then opens by Degrees, and as they " open, the Lips of the new Polypi fhew
" themfelves more and more; and, foon
" after the Separation is compleated, each
" begins to thew a Pedicle of its own. -
"Ten or twelve Hours after, thefe two
"Polypi again divide themfelves each into
"two more; they foon after put out
"Branches, and thus retire to a greater
" Diftance from each other. When two
"Polypi are thus formed by the Divifion of
"one, the one is ordinarily much larger
" " than the other: this larger one remains
"s at the Extremity of the Branch where it
" was, but which Branch lengthens itfelf.
" more, whilft the other puts out a new
" Branch which feems to proceed from the
" firft. The larger of thefe Polypi again
" divides itfelf generally before the other:
" and all I have been defcribing is reiterated
"reveral Times. Thus a principal Branch
" is formed, provided with feveral lateral
" ones: thefe lateral Branches become
" principal, with regard to thofe which in
" their Turn feem'to fring from them, when
"s the Polypi at their Extremitics come to
" divide. - All the Polypi of a Clufter do
"6 not detach themfelves from it at the fame
"T Time: thofe which are neareft to the
"Origin of the Branches ufually detach
" themfelves firft. And every Polypus fo
"s detached, goes and fixes itfelf elfewhere;
" every one thus becoming at laft, if not " prevented, the Principal of a new Clufter. Mr. Trembley tells us farther, "that he " followed the Progrefs of a Clufter in the
"Month of September 1744. It confifted,
" on the gth Day of that Month, but of one
" fingle Polypus: this Polypus divided itfelf
" that Evening, and at Half an Hour after
" Eight of the Clock, there were to bedifco-
" vered two perfect Polypi, whofe Pedicles
"f or Branches continued lengthening till
" the Morning of the next Day, being the
"Tenth of the fame Month of September.
"At about a Quarter after Nine that Morn-
" ing, thefe two Polypi began alfo each to
"d divide, fo that after a Quarter paft Eleven
"s there were four compleat Polypi, whofe
"feveral Pedicles formed themfelves foon
" after. On the Eleventh of the fame Sep-
" teinber, about Half an Hour after Seven in
" the Morning, he found that thefe four laft " Polypi had already again divided them"felves, that is to fay, there were eight " diftinct Polypi.-And he has taken No" tice of Clufters, the Numbers of whofe "Polypi have conftantly gone on doubling, " from 2 to 4 , from 4 to 8 , from 8 to 16 , "from 16 to 32 : after which he has been " no longer abie to count exactly the Num" ber of the Polypi." - But their Multiplication is fo prodigious, that he fays, "on "November Ift, 1744, there was in one of " his Glaffes, a Clufter compofed of feveral " lefict
" leffer united Clufters, which was abova "6 an Inch over every Way."

Thefe Quotations are taken partly from $\mathrm{N}^{\circ} 474$ of the Pbil. Tranf. and partly from the Appendix to the 44th Vol. of the faid Tranfections. The Polypes here particularly intended, are thofe I have called Bell-Animals in the former Part of this Work, and that Species whofe Figure is given in this Plate N. vi. and its Defcription, page $33^{8 .}$ There is however Reafon to believe, that all the other Ciuftering Polypes already taken Notice of in this Plate, may be propagated after the fame Manner.
N^{0} vir. viil. ix. Ghew different Appearances of the fame Animalcule, which is another Species of the Funnel-Animal, vid. $\mathrm{N}^{\mathrm{o}} \mathrm{I}$. $f g$. They are found together fometimes in vaft Abundance on the Shells of Water Snails, Ec. feeming to the naked Eye like a green flimy Matter. When firft applied to the Microfcope, they are ufually feen contracted, as N^{0} viri, but being left at Quiet for a little while, they change their Figure to that of N° vir. and fwim about very brifkly with their large Ends forward. At other Times they appear like N° Ix. having then a toothed Wheel at the Head or largeft End, that moves round with prodigious Velocity, in the Manner of the Wheels of the Wheel-Animal, already defcribed page 269, put having a much larger Wheel than either
of thofe the Wheel A nimal is furnifhed with. Its Gyrations are fo fwift, that without great Attention they cannot be feen. The Teeth are moft confpicuous when it begins or ends its whirling, or when it becomes fick by Confinement in a Drop of Water. On being difturbed by any thing, they contract themfelves as at N° viri,

C H A P. XVI.

The Mulberry Insect.

THE Figures and Defcription of $\mathrm{N}^{\circ} \mathrm{xv}$. 1, 2, 3, were fent me by Mr. Arderon, in March 1745-6.-He fays, that on the firft Day of the faid Month he found in the Water of a Ditch, at Norzoich, fomecxceeding ftrange Animalcules, which from their bearing fome Refemblance to the Fafirion of that Fruit, he calls IMulberry Infects : tho' the little Protuberances that fand out round them equally on every Side, make them rather more globular. Their Bowl-like Motions are much the fame as thofe of the Globe Animal, defcribed page 322 ; but they did not move fo readily from Place to Place, and their Protuberances appeared folofely cornecied together, he fhould rather take them for a Congeries of Animalcules than one fingle Animal.-As to this Particular
he feems however in fome Kind of Doubt: and in a Letter received from him afterwards, he imagines the Mulberry Infeet may poffibly be the laft-mentioned Cluftering Polypes with Opercula (N° xiII.) not yet come to their perfect State. He met with feveral of thefe Infects, or Congeries of Infects, of different Sizes, and with different Numbers of Knobs or Protuberances, fome having 50 or 60 , others more or lefs, even down to 4 or 5 , but the Manner of moving was the fame in all.

C H A P. XVII.

The Pipe Animal.

UPON the Sea-flore, on the Coaft of Norfolk, and without Doubt in other Places, Heaps of fandy Matter are to be feen at low Water, two or three Feet fometimes in Length, compofing Multitudes of fmall Tubes or Pipes, which are the Cafes or Habitations of living Creatures. My Nortoich Correfpondent, to whom I fand obliged for this Information, wrote me Word, that a Friend of his broke off and brought to him a fmall Piece of fuch a Congeries of Tubes or Pipes, in Shape and Size as at N° II. in which a a a a fhew the Mouths or Openings of the Pipes wherein the little Creatures make their Abode.

He carefully feparated one fingle Pipe from the reft, and placed it in a Glafs of Water, to give the little Inhabitant an Opportunity of coming to the Mouth of its Cell, which it did accordingly very foon, and then appeared as at N° HI. where the Figures both of the Animal and its Cafe are magnified nine or ten Times in Diameter. The Pipe or Cafe b is made of Sand, intermixed here and there with minute Shells and Sand, all cemented together by a glutinous Slime iffuing I fuppofe from the Animal's own Body c, which is compofed of mufcular Ringlets, (like thofe of a Worm,) capable of great Extenfion or Contraction. The anterior End or Head d is exceedingly beautiful, having round it a double Row of little Arms, difpofed in very regular Order, and able I fuppofe to extend themfelves for the catching of its Prey, and conveying it to the Mouth that appears in the Middle of this anterior End. But the Animal being fick for Want of Salt Water did not extend its Arms at all, and expiring foon after, no Way was left of coming at its true Figure when ftretched out.

I am fenfible that the Account here given is very imperfect; but it may I hope induce fome curious Body, who lives near the SeaShore, and has an Opportunity of fo doing, to furnith us with a better.

6
Pipes

$$
\text { Water Hog-Loufe or Sow. } 35
$$

Pipes or Tubes of this Size and Figure are fometimes found petrified, and conftitute one Species of the Syringoides.

C H A P. 'XVIII.

The Water Hog-Louse or Sow.

THE Animal figured Plate XIV. $\mathrm{N}^{\circ} 1$. although an Aquatic, bears fo near a Refemblance in its general Appearance to the Millepedes, Sow or Hog-Loufe, efpecially when creeping at the Bottom of any Veffel wherein it is kept, that it may properly enough be called a Water Sow, or Water Hog-Loufe.

Its whole Length is made up of nine Divifions, the anterior and pofterior whereof are the Head and Tail. To the Head, which is almoft round, and about the $\frac{x}{x^{2}}$ Part of the Animal's Length, are affixed two very long Antenne, each confifting, next the Head, of four diftinct Joints, and then fhooting out a Part extremely flender and tapering, and but little fhorter than the whole Body of the Animal ; which on a clofe Examination appears compofed of many Articulations, having an exceeding fine Brifte iffuing from each, as the larger Joints near the Head have; from the Infertion of the fecond of which larger Joints a Branch arifes, confilting. Middle of the anterior Part of the Head are placed two very fmall and fhort Feelers. Its Eyes, if it has any (which I think its Actions leave no room to doubt) are not difcoverable; either from their Smallnefs or the Opakenefs of the Animal.
The Body (not reckoning the Head and Tail) is compofed of feven Divifions, which increafe in their Breadth, but not much in their Length as they approach towards the Tail, the Body being about three Times as broad at the laft of thefe Divifions as it is at the firft. From the firft Divifion next the Head arife two flort Claws, terminated by a Hooks that can bend down like a Clafp-Knife, and from every one of the other Divifions procecd two long Legs, each compofed of five Articulations, and alfo a fingle law at its End. In thefe Legs two Blood-Veffels may be difcovered, even by a Glafs that does not magnify very greatly : one carrying the Blood from and the other returning it to the Body. The Globules of this Blood, or animal Fluid, appear about ten Times as large as thofe of the human Blood, and their progreffive Motion is very flow and languid, whereby they become more diftinguiflable than the Globules are in the Blood of Animals whofe
whofe Circulation is fwifter. The Legs are very hairy, efpecially at the Joints, and fo is the whole Body of the Animal, which occafions it to be frequently fo covered and entangled with the Dirt and Scurf of the Water, as to prevent its Figure from being truly feen.

The Divifions of the Body are each of them covered on their upper or back Part with a Scale or Cruft, extending beyond and hiding the Infertions of the Legs, which however are Chewn in N° II, where the Animal is turned on its Back. To the hindermoft of thefe Divifions the Tail is fixed, which is perhaps the moft remarkable Part of the Animal. Its Length is about three Times as much as that of the largeft Divifion of the Body; its Breadth nearly equal to its Length, but tapering fuddenly towards the End, like the Tails of fome of the Beetle Kinds. From the back Part thereof, which is covered with a Shell or Cruft, arife two joined Branches, ftanding out at an Angle of about 45 Degrees to the Plane they rife from, each dividing again into two, and having Briftes like the Less. The Ufe of theie Branches is not yet difcovered.

On the under or Beily Part are placed two Sets of lalves, riing up and falling down, alternately, in a perpendicular Direction: thefe may probably ferve for the Purpofe of Lungs, or as the moveable Coverings of the Gilis of Vol. II. A a

Fihhes,

354 Water Hog-Loufe or Sorv.

Fifhes, to breathe through, or regulate fome of the other animal Functions. And what feems to confirm this Opinion is, that on depriving the Animal of them, the Circulation in the Legs cealed inftantly, though the Creatures lived for fome Time afterwards. The Motion of the Valves, however uniform at any one Time, is not'always of the fame Quicknefs, being now and then fo low as nearly to beat Seconds; (when it is vifible, cven by the naked Eye, in certain Pofitions of the Animal) whereas they move at other Times with above twice that Velocity. And this feems to be nearly in Proportion to the Temperature of the Weather, their Motions being always floweft in the coldeft Seafons. At $b \mathrm{~N}^{\circ} \mathrm{mr}$. which is a Profile View of this Creature, the Valves are fhewn as they appear when moving. Their working up and down continually, renders it difficult to be fure of the true Figure, or indced the true Number of them; but there feems to bc four Pair, which move not all together but alternately. The external Pair feems ftrengthned and fupported by a Couple of ftrong jointed Tendons, as is thewn at N° II. b.

The natural Size of this Animal when at its full Growth is about three Tenths of an Inch in Length. Its Motion, notwithftanding the great Number of its Legs, is very flow, auk ward and unwieldy: and indeed the Leng th and Slendernefs of the Legs feem to
render them incapable of fupporting the Body in the fame Manner as thofe of other Animals do: fo that it more properly may be faid to be dragged along by than to be carried on them. This Kind of Motion makes him a very difagreeable Companion to other aquatic Animals that happen to inhabit the fame Veffel: with him, which he rather chufes to trample on and overturn than to move out of his Way for them. He is however as much tormented in his Turn by Funnel Animals, Bell Animals, Wheel Animals, $E^{\circ} c$. which frequently faften themfelves upon him, in fuch a Manner as not to be difengaged by his utmoft Efforts.

He fwims fometimes, or rather climbs to the Top of the Water, by the Help of his Feet, but cannot remain there for any Length of Time, his Weight immediately finking him down again: : and indeed he generally chufes to continue at the Botom, where he frequently is found covered and overwhelmed by the flimy Sediment of the Water. He fometimes alfo brings his Head and Tail together, and forms himfelf into a Ball in the Manner of the Land Hog Loufe.

As to the Way of their Generation, nothing farther is yet difcovered than that they are viviparous: for they are fometimes found having a large Bag hanging down from their Bellies, as fhewn at $a, \mathrm{~N}^{\circ}$ inf. On cuting this open the young ones have been feen
to come out alive, to the Number of feventy or eighty: yet on examining the Animal the Day following the Operation, there ftill appeared fome remaining in the Bag; but whether they came not all out at firft, or that fome of them returned in again, was uncertain, tho' the latter feem'd moft probable. An old one is fometimes feen holding one of its Young, (when grown even to a confiderable Size) under its Belly between its Legs, which it will not part with unlefs compelled to do fo by fome confiderable Force.

C H A P. XIX.

> Of the Frefl Water Seuille:

THIE Animal whofe Figure is exhibited N° iv.Pl. XIV. was brought to me, amongft a Varicty of other Infects, in fome Water taken out of a Pond communicating with a Ditch at Kentibs Town, near London. The Head and Breaft were cruftaceous : the Tail and Belly Part were foft, and except the In'teftines extremely tranfparent ; by which Means, the periftaltic Motion of the Bowels could be feen with great Diftinetnefs. The Head was armed with a Pair of flrong Forceps, ferrated or toothed near their Bafe like thofe of 'fome Spiders, whereby they are the
better enabled to hold their Prey. A Pair of hooked Claws were likewife placed near the Infertion of the Forceps, and became affifting to them. A Snout projecting be \rightarrow tween the Forceps, having two very hort Feelers, and between them a tharp flender Probofcis, could be thruft out or drawn back at Pleafure. Under the Breaft and Belly were fix Legs, ferving either to fwim or crawl. It had two pretty large black Eyes : from the Breaft to the Extremity of the Tail the Sides were thinly befet with Briftles, and a few Brifles were upon the Legs. The Bowels were feen moving, as plainly as if they had been in a tranfparent Cafe, widening their Diameters and rifing upwards towards the Breaft, and then prefently contracting in Widthrand extending downwards: thefe Motions were alternate ; and fometimes the Bowels were Atretched almoft to the End of the Tail, where the Anus was placed, and there difcharged the Froces. It was exceedingly voracious, killing and devouring moft of the other Creatures that were in the Water with it.

I take this Animal to be a Frefl Water Squilla, of which there are many Species. It was about twelve Times lefs than the Drawing, and therefore muft either be of a much fmaller Species than I have ever met with, or elfe a very young one, not yet perhaps come to its perfect State; the Tail beA a 3 ing
$35^{8} \quad$ Frefo Water Squilla.
ing neither jointed nor faly as the larger. are, fome of which I have feen bigger than the Figure before the Reader. I know the Squille change their Coats feveral Times, and perhaps they may alfo change their Form.

As the natural Hiftory of the Squilla is known to very few, I thall here infert fome curious Obfervations made thereon by Mr. Fofepb Sparflall, of Wells in Norfolk; in a Letter dated April 6 th 1749.

The following Obfervations (fays he) were made laft Summer, whilft I lived at Wymondbam, on an Infect very common in the Itanding Waters thereabouts; I think it's the fame defcribed by Mouffet in his Theatre of Infects, by the Name of the Squilla Aquatica. - In fearching for other Water Infects, I have frequently found thefe amongft Weeds in Ponds and Ditches, full two Inches and a half in Length.

The Head of this Animal is broad, flattim, and pretty tranfparent, being very thin in the fore Parts. It has no Mouth, nor does it feem to need any, for it takes in all its Nourifhment through a large and ftrong Pair of Forceps, one Limb of which is placed on each Side its Head. Thefe Forceps are hollow almof their whole Length, with a very fmall Aperture on their Infide; and when the Creature has feized its Prey, the Juices are conveyed through the Forceps, by two Channels, to about the Middle of the Head; where both
both Branches unite and are thence continued to the Stomach. Iam the more certain of their receiving no Nourifhment but what paffes through the Forceps, as I have often by the Affitance of a fangle convex Glafs, and fometimes by the naked Eye enly, when the Infect has been fucking its Prey, feen the Juices thereof pafs in a fine Stream through the Forceps and Head. This is more particularly vilible juft after the Squilla has caft its Skin ; at which Time the Forceps and Head are molt of all tranfparent. Six very finall black Eyes are difcernable on each Side of the Head, very near the Origin of the Forceps.

- Its Body is compored of eleven joints or annular Divifions; the Edges whereof flide eafily over one another : the laft Divifion is long, tapering and hollow, ferving to buoy up the Animal to the Surface of the Water; its Back is hard and of a dark brown Colour, having a paler Streak down the Middle: its Belly is foft and yellowifh: it hath fix Legs finely befet on each Side with a fingle Row of Hairs; its Tail is alfo hairy and divided at the End.

In the Water it generally hangs, fufpended by the Tail, from the Surface; the Body arching backwards, fo as to make the Belly the convex Part, and the Head inclining upwards towards the Back. In this Pofture it waits, like its Fellow-deftroyer the CrocoA ${ }^{2} 4$
dile,
dile, quite motionlefs, till its Prey is fairly within its Reach; when by a fudden Spring of the Head it feizes it in an Inftant, and feldom quits it till it has got its Belly full.

I kept feveral of thefe squilla in Jars during the greateft Part of laft Summer, to make Obfervations on their Manner of feeding ; in order to which, I began with giving them the larger Sort of Earth-W orms, which they feized with the greateft Eagernefs; and notwith flanding the wreathing and twitting of the Worms for a long Time, they very feldom quitted their Hold, till the inward Contents were quie exhaufted, and nothing left but the Skin.

- I ufed frequently, for Want of more proper Food, to give them fmall Pieces of raw Veal or Mutton, which at firft they were very greedy of, but would not eat for above a Day or two together: but whilit I have been giving them a Bit of Meat, they would ftrike at my Fingers with great Fury, though they were not able to penetrate the Skin *.
One Day I offered one of them a very large Tadpole, and quickly difcover'd it was its natural Food by the Greedinefs with which

[^46]$$
\text { Frefb Wafer Squille. } \quad 3^{61}
$$
it feized it: and by giving them in large Quantities, I found it would fometimes deftroy near twenty of them in a Day, fucking them till all the Inwards were exhaufted. Another Time I put a Tench of about three Inches long into a Glafs of Water, where one of thefe Creatures was, fcarce believing it durit make an Attempt on an Animal fo fuperior in Size : but no fooner did the Tench come near the Squillu than he fruck at it with all his Might, and fixed his Forceps in its Side ; tho' the Struggling of the Tench made hin quit his Hold. A Drop or two of Blood iffued from the Wound, and the Fif died in about a Minute : which makes it not improbable, the Bite of this Creature may be poifonous to the Inhabitants of the Waters.

The Banfticle itfelf, which is fo great a Deftroyer of the fmall Fry of Finh, and fo well armed for Defence, is notwithftanding a Prey, to this Devourer; as I found by putting a very large one into the Jar where 1 kept a Squilla. This Banfticle had lived about a Month in a Jar arnongit fome Tench, moft of which had felt the Effects of his Fury, though three Times larger than himfelf. -He was always very lively, and would feldom fuffer the Tench to meddle with the Worms I gave them, till his own Belly was full. But on putting him to the Squilla he was changed immediately from the moft daring to the
the moft fearful Animal ; lurking at the Bottom of the Glafs, and continuing there for feveral Hours together; neither would he touch the Worms I offered him, feeming perfectly fenfible of the Power of his Enemy. However at laf, coming within the Reach of the Squilla, it feized him furioully by the Back, entering its Forceps on each Side, and after a few faint Struggles he yielded to the Conqueror.

Some Time after, I put into the fame Jar two fmall Water Newts, of about an Inch and a half in Length; which were both devoured in a very little while. I alfo put into the fame Jar a Water Newt near four Inches in Length, imagining the Squilla would not venture to attack one of fo large a Size; and indeed at firft he feemed afraid of it, but in a few Hours ventured to frike at it: though the Skin of its Back being too thick for his Forceps to enter, he made feveral unfucceisful Attacks, till feizing it by the Belly he quickly killed it.

Thefe Creatures certainly deftroy great Numbers of Fith, and may poffibly occafion the Death of many of thofe that are frequently feen lying dead by the Sides of Ponds, Eic. yet they, feem more fond of. Tadpoles, and are found very large and plump where there is Plenty of them ; but in other Places are generally very fmall.

I have

Brifled Infect.

I have obferved another Species of the Squilla fomewhat different from the former: shey are conftantly hunting about in queft of Prey, fwimming by the Affiftance of their Legs in an horizontal Pofition. I put feveral of both Sorts into a Jar of Water together, but the firft-defcribed quickly devoured all the laft, though fome of them were nearly of an equal Size *.

C H A P. XX.

The Bristled Insect.

NUMB. v. Plate XIV. reprefents a fmall cruftaceous Infect which was found crawling on a Brick Wall, fune 3oth 1746. Its general Appearance was fomewhat like that of the Millepes, Sow or Wood-Loufe; but befides its being covered with Briftles, where-

[^47]25 the Millepes is finooth, and its having a pretty long briftly Tail, it infinitely furpaffed any of that Kind in Beauty. The Coat or Ground was brown, and on that a great Number of indented Briftles or Spines were fet, which on its Sides were di fpofed in Tufts, but on its Back in Rows. They were of a fnowy Whitenefs, and made fo fine a Contraft to the brown Coat whereon they food, that the whole, when magnified, refembled a curious Picce of Carving in Lignum Vitæ fet off with Decorations of Ivory.

This is a rare Infect, of which I don't remember ever to have met with any Defcription.

C H A P. XXI.

An Infect awitb Fifh-like Fins.

AMONGST fome Water and Weeds brought from a Ditch that communieates with the River Yar, a beautiful little Animal was difcovered, (May 9th i746,) whofe Singularity feems well worth defcribing: and it is hoped that the Figure N° vi. will give a pretty good Idea of it. The Head was remarkable for two very large pearled Eyes and a Pair of long Antennæ. The anterior Part of its Body had much the Rcfemblance of fome of the Beetle Tribe, and
Infect with
was furnifhed like them with fix flender Legs. limmediately below this Part, the Body leffened, and was connected together by feven Articulations, the Part between each Joint fpreading wider at the lower than at the upper End: They appeared all together like the Spinal Vertebra; and from the Procefs of each Joint iffued a Pair of Fins, making feven Pair, or fourteen in the whole. Three other Joints below the Fins terminated the Tail, the End whereof was ornamented with three long and very elegant Briftes, befet on every Side with fhort Hairs, and appearing like Plumes of Feathers. The whole Animal was of a faint green Colour, except the Fins, which were as tranfparent as Cryftal. Under each Fin ftood out a fmall Spine ; ferving either to fupport the Fin', or as a Weapon of Defence.

Its Motion in the Water was extremely fwift, darting itfelf along at a furprizing Rate : with oine Stroke only of its Fins it would fwim acrofs a' Glafs Jar it was kept in; but out of the Water it creeped as Land Infect's ufually do. Its Legs were never employed whilf in the Water, and on the Land it makes no Ule at all of its Fins.

This Animal is in its Nympha State, out of which it changes into a fmall species of the Libella *.

No vir of this Plate was defribed page 32 I .
CHAP .

[366]:

C H A P. XXII.

An Infect roith Net-like Arms.

AN inquifitive Mind will be inexpreffibly delighted with confidering the different Forms of living Creatures: the Changes they undergo; their feveral Parts, Members and Organs; the Manner of their Production; their various Motions, Difpofitions and Ways of Life; the different Kinds of Food they eat ; their Sagacity, Cunning and Dexterity in procuring it, and the Inftruments they are furnifhed with for that and every other needful Purpofe. Thefe are Subjects that open the Underftanding, and unite every Faculty of a well difpofed Mind to adore the Almighty Author of fuch amazing Contrivance, Order and Beauty. Every thing that lives can furnifh out an Entertainment of this Sort: but the larger Animals with which we are daily converfant and faniliar, though of a more noble Nature, and immediately neceffary, to Man : thefe, I fay, as to the Particulars abovementioned, have not the fame Charms of Novelty to gratify Cu . riofity and recommend them to a frict Examination, as thofe very minute and almont imperceptible Creatures, difcoverable by Glaffes only: with any whereof we are hitherto but flenderly acquainted, and of which there
there may be probably Thoufands of Species never feen by an human Eye

Amongft the fmaller Animals, the little Creature I am about giving an Account of has I believe hitherto efcaped Obfervation; and might perhaps have ftill continued long unknown, had itnot been difcovered accidentally, by the fame ingenious Searcher into $\mathrm{Na}-$ ture, to whom the Reader is obliged for many curious Articles in this Volume, and whofe Defcription of iti I can depend upon, though I have not met with it myfelf.

In a Letter now lying before me, dated July roth 1746; he writes me Word; that on the 25 th of the Month of May preceding, going to the Seat of Benjamin Nutbail, Efq; at Frimingbam, in Norfolk; , he had the Pleafure there of feeing feveral Cafcades, fupplied with Water from the Side of an adjacent Hill, and affording a moft charming Profpect : and that as he was there attentively obferving one of the Conveyances belonging to the Cafcades, through which the Water ran extremely fwift, he difcerned at its Buttom feveral fmall Infects, ftanding erect upon their Tails, and refembling when all together the Combs of Bees at the Time they are filled with their Aureliæ ; but on touching them, they immediately feparated and difperfed. However he took up many of them in a Bottle with fome Water, in order to examine them at Leifure; and looking
at them next Morning, he found they had formed a great many Threads in the Water, much refembling the Webs of Spiders: one of them heing taken out of the Bottle with a Quill, it dropped therefrom, and fpun a Thread by which it hung, exactly like the common Garden Spider.

He then examined one of thefe Creatures by a Microfiope, and was much furprized at the Oddneits of its Shape, and the very extraordinary Method whereby it takcs its Prey, - The Body appeared as if it had been elegantly turned with a Lathe; being curioufly rounded, and gradually fwelling and diminifhing in feveral Places; and at the Tail End were three Spines whereon to raife itfelf and ftand upright in the Water; but the moft amazing Circumftance of all was the Apparatus about its Head, where there was placed on each Side a Kind of Fan or Netlike Machine, ferving to provide its Food. Vid. $\mathrm{N}^{\text {o }}$ viri. Plate XIV.

Thefe Nets (if it may be:allowed to call them fo) the little Animal frequently fpread out and drew in again: and when drawn up they folded together with the utmort Nicety and Exactnefs, and could be brought fo clofe to the Body as not to be difcernable. At the Bottom of thefe Nets or Fans a Couple of Claws were faftened to the lower Part of the Head; which Claws, every Time the Nets were drawn in, conducted to the Mouth of
Infect witb Net-like Arms.
the Animal whatever was taken in them proper for its Food. When the Creature did not employ its Nets; it thraft out a Pair of fharp-pointed Horns for its Defence, as is Shewn at $\mathrm{N}^{\circ} \mathrm{IX}$, where a larger Figure of the Head and Claws is given, the Diameter being there magnified twenty Times, and the Area 400.

Thefe curious Animals were all dead in 48 Hours, notwithftanding frefh Water was given them feveral Times; which then prevented any Opportunity of learning more concerning them, and made my Friend imagine they might be amphibious Creatures, tho' he found them in Water ; or mighe porfibly undergo fome Change in Form, or Way of living, the Difcovery whereof he-hoped for at fome other Seafon.

He fearched for them after this in the fame Place feveral Times, but without being able to find any of them, which occafioned him to conclude, they had either put on another Form, or removed themfelves to fome other Parts of the Water. However he had met with no Opportunity of looking there for them, at or about the Seafon when he had firft obferved them, 'till the Yeat 1749, when happening to be near the Car cades on the 2 Ift of $M a y$, he determined to try his Luck oncè more, and then found; with little Trouble, many of the very fame A nimals, in the mof rapid Part of the Car-

$$
\text { Voz. II. } \quad \text { B b of the Caf- }
$$

cade where he had feen them firft. Hie carried feveral of them home very carefully in a Phial, but in two Days mort of them were dead, and the reft having fipun themfelves thin tranfparent Cafes, (which were faftened either to the Sides of the Glafs, or to Pieces of Grafs put into the Phial with the Water,) became changed into what he fuppofes a Kind of Chryfalis, of which a Front-View is given $\mathrm{N}^{\circ} \mathrm{xI}$, and a Side-View N° xil. But before their taking this Form, he perceived them fometimes in another Shape, different from the firft defcribed, and fuch as is fhewn $\mathrm{N}^{\circ} \mathrm{x}$; which, he fays, was the Figure they appeared in when they were weary with catching their Prey, or lay in wait for it.

None of them lived more than three Days: and 'tis remarkable, that notwithftanding frefh Water was given them two or three Times a Day, yet in a few Hours it would ftink to a Degrec fearce conceivable, and that too at feveral Yards Diftance, tho' in proportion to the Water all the included Infects were not more than as I to $1,150,000$. -How exquifitely fubtile and minute muft the Effluvia from the Bodies of thefe little Animals be, that can fo foon and fo ftrongly infect fuch Quantities of Water and Air! This perhaps makes it neceffary for them to live in a rapid Stream, left they thould be poifoned with their own Perfpi-

Infects on the Bark of the A / B. 371 ration, as perhaps they were in the Glafs Phial.

The largeft of them exceeds not $\frac{3}{10}$ of an Inch in Length and $\frac{1}{30}$ of an Inch in Diameter : they feemed rather foft and flefhy than cruftaceous, and their Colour was a Kind of yellowifh grey.

C H A P. XXIII.

Infects found on the Bark of the Am.

AT the Beginning of February 1748-9; I received from the famecurious Perfon two Pieces of the Twigs of an Afh Tree, (juft cut when they were fent) of about half an Inch in Diameter. Each of thefe had one of its Sides covered thickly from End to End with Numbers of little Spots, not larger than very fmall Pins Heads, and rather long than round. Their Colour was fomewhat different from the Bark on which they were placed, and an attentive Eye could perceive they rofe a little about it. On crufining them, a Liquor red as Blood iffued out; and each Spot, when examined by the Microfcope, was found to be of a filky Subftance, adhering clofely to the Bark, and ferving as a Covering or Neft to 30 or 40 Ova, which on removing this Covering with the Point of a Lancet prefented themfelves to View; much reBb_{2} fembling

372 Infects on the Bark of the Afh.
fembling the Aurelice of Ants in Shape, but a thoufand Times more minute, and of a beautiful fcarlet Colour.

This Difcovery excited a ftrong Defire of learning what Kind of Animalcules there little Ova would produce ; but thofe in my Poffeffion never.caine to any thing, being, I fuppofe, deprived of a due Degree of Moifture by the drying of the Twigs. My Friend's Diligence however fupplied this Defect : for Aticking a Bough covered with them into the Ground, in his Garden, in a warm Corner where the Sun could fhine freely upon it, prodigious Swarms were hatched of beautiful little Infects of a fine Scarlet Colour, whofe Figure is given N° xiri. O.-Their Back is fomething like that of the Wood-loufe or Sow, and in other Refpects they differ not greatly from that Animal in Form : but are armed with a large ftrong Pair of Foreeps, which the Wood-lotfe has not.
'Tis a pleafing Entertainment to fee them creep out of their filken Cafes or Coverings, at an Opening in the Cafes at one End, left there probably for that Purpofe by the Parent Infect, when fhe wove this Integument over her little Brood to preferve themfrom Injury ; in like Manner as many Sorts of Caterpillars leave Openings, or a much loofer Spinning at one End of their Pods, through which after their Change they may. be able to come forth. See N° siri.

Andit is worth remarking, that every fingle Infect, befides being inclofed in this Covering of Silk, which is common to 30 or 40 of them, has a pure white tranfparent Cafe or Shell, which being left by the Infect nearly refembles the Shape of an Hen's Egg ; and if they are not difturbed at the Time of hatching, moft of their Egg-fhells will be found empty under the common Coverture. And by attending to them a little, one fhall fee, at the fame Time, feveral of thefe Infects hatched, fome juft breaking out of their Shells, and others creeping about with their Shells hanging to their Tails, as at N° xir.

My Friend's Account fays, that the largeft of thefe Animalcules meafured little more than the II4th Part of an Inch in Length, and the 200th Part of an Inch in Breadth; and confequently the Number of them required to cover a fuperficial Square Inch would be fomething more than 22800 *.

His Method of finding their Magnitude was as follows.-In order (fays he) to be certain of the magnifying Power of the Glafs I made ufe of, (which was the third Magnifier) I divided a Line, drawn exactly an Inch in Length on a Slip of round Glafs, into 20 equal Parts. Then placing this Slip of Glafs under the Microfcope, I threw the magnified Image of one of thefe 20th Parts upon

[^48]$$
\mathrm{Bb}_{3} \quad \text { a Scale }
$$

374 Loule of the Carp.
a Scale of Inches feen by the naked Eye, according to Dr. Hooke's Method *) and found it coincide exactly with 4 Inches: and confequently that the Glafs magnified 80 Times. Then taking my divided Inch from under the Magnifier, in order to make ufe of it in the fame Manner as I before had done of the Scale of Inches, I caft the magnified Image of one of thefe Animalcules on my Scale of Twentieths of an Inch feen only by the naked Eye, and found its Length to cover 14 and its Breadth 8 of thofe 20th Parts of an Inch.-But the Meafures of $\frac{14}{25}$ ths and $\frac{3}{20}$ oths being only the apparent Dimenfions, they mult be divided by 80 , the magnifying Power of the Glafs, to give the real Size of the Animalcule, which will then be found to be $\frac{1 . t}{T \delta 0}$ in Length, and roio in Breadth: which Fractions reduced to their fmalleft Denominators will be - $\frac{7}{06}$, (nearly π^{\prime} th) and $\frac{1}{200}$: or taken decimally, rocisouth, and sosoth Parts of an Inch.

C H A P. XXIV.

The Louse of the Carp.

TH E Animal fhewn at N° xiv. Plate XIV. was found, with feveral others of the fame Kind, fticking to a large Carp,

* See this Method explained in T'be Microfoope made eafy, page 45:

$$
\text { Ioufe of the Carp. } 375
$$

jut taken out of the Canal in St. 'fames's Park. It was about one Tenth of an Inch long, and nearly as much in Breadth at the broadeft Place. Its Back was covered with a Shell, (or rather pliable Scale) of the Figure reprefented in the Drawing : this Shell was fo extremely tranfparent, that the finny Legs, of which it has four Pair, befides two florter Claws, might be feen almoft as clearly through it as if they had no Covering; and on each Side the Body of the Animal, at equal Diftances therefrom, were many curious and beautiful Ramifications, fome what opake, extending a confiderable Length, and feeming either to be Blood-Veffels, or mufcular Proceffes connecting the Body with the Shell.

The Tail was a Kind of fcaly double Fin, not unlike thofe at the Extremity of a Lobffer's Tail, but exceedingly tranfparent, and each Half or Fin was marked with one fingle black Spot, as in the Plate.

The Eyes (which for the Sake of thewing them to more Advantage are greatly magnified at fig. K. I. I.) were very fingular in their Structure, being neither fmooth fingle Balls, like thofe of moft Quadrupeds, Birds and Fifhes; nor pearled Balls like the Eyes of many Infects; but in this Animal each Eye was compofed of a globular Body, almont incircled round with fmaller Globules, as the Drawing reprefents.

Between

Between the Eyes appeared two Pair of fhort Atrong Spines, one Pair whereof pointed forwards and the other backwards: I know not whether thefe ferved as Feelers, or were Weapons of Defence or Offence. At a little Difance below the Eyes were placed two large cylindrical or rather fomewhat conic Suckers, compofed of feveral Annuli, feemingly like thofe that form the Windpipe in Birds and Beafts. The Animal, by Means of thefe, adheres and fixes itfelf fo ftrongly to the Fifh it preys upon, that all the Motions and Efforts it can ufe are infufficient to thake off the little. Tormenter, who is continually feeding on and making it unealy. See the Suckers fig. K. 2, 2. Juft below them at 3 , and above the grand inteftinal Duct, lay the Heart, compofed of twa Lobes, which might be feen to contract and dilate alternately, as the Hearts of many other minute aquatic Infects do.

One of the fhort Fore-claws, which is covered with a frong Shell, and armed with three Hooks at its largeft Joint, is fhewn fig. L.

This little Creature makes a very pretty Appearance in the Water, where it is continually playing up and down, with a Kind of hovering Motion, like that of the MayFly in the Air. Sometimes it leaves the Fifh to divert itfelf for a while in fuch Manner, and then fettles on it and fixes itfelf
again.

Loufe of the Banfickle, or Prickleback. 377 again. The internal Motions of the Bowels, §c. are prefented fo finely to Obfervation, by the uncommon Tranfparency of its Shell and Skin, that it is a moft agreeable Object for the Microfcope; and the Carp is often peftered with fuch Numbers of them, that they are not very difficult to procure. They may be kept a long while with the Carp in Water, but unlefs the Fifh be with them they die in a Day or two.

The natural Size of this Infect, at its full Growth, is fomething lefs than one of its Eyes appears in the magnified fig. K.

C H A P. XXV.

The Loufe of the Banftickle, or Prickleback.

NUMB. xv. is the Picture of the little Vermin that infefts the Banffickle or Prickleback; whereto it adheres fo firmly that it is hardly poffible for the Fifh to get rid of it, unlefs it pleafes to unfixitfelf. It is furnifhed with a Pair of fucking Inftruments like the Carp-loufe, has the fame Number of Legs or Fins, which are continually in Motion, whether it be fwimming or faftened upon the Fith: and in moft other Particulars it fo nearly refembles the faid Animal, that after taking Notice of fome Difference in Shape, which
37^{8} Long-frouted Squilla, \&c. which the Picture may ferve to fhow, nothing more need be faid about it.

C H A P. XXVI.

The Long-fnouted Seuilla, Boc.

SEVERAL of the Infects fhewn. N° xvi. were fent to me from Yarmouth, in a Bottle of very clear Water. Some were about a Sixth Part as big as the Picture, and others a great deal lefs, but none of them alive: having cither been fuffocated by corking the Bottle too clofe, or Chaken to Death in bringing. They feem to be of the Squilla Kind, tho' a Species I have never feen before or fince; but the Numbers that were fent make me imagine they are frequent in thofe Parts.

The Back is cruftaceous, and jointed like a Lobftr's Tail ; having ten Articulations, which divide it into eleven Parts, the middlemoft of which are wideft; for they leffien from thence to the joining on of the Head one Way, and grow tapering the other Way to the Extremity of the Tail, which ends almoft in a Point, with a Sort of a Horn on cach Side, that extends beyond the Tail. The Scales of the Back reach down the Sides, and neeet the upper Part of the Belly, beyond which they ftretch out and overhang a little. The Belly is fofter than the Back, 10 and

and from its anterior Part proceed fix Legs, on each Side three, jointed in an odd Manner, and feemingly but aukward for walking with. But the moft extraordinary Part of this Animal is theHead: a Draught whereof, magnified a great deal more, is given fig. S.This Head is armed with a Pair of very fharp hooked Forceps ; between which it is lengthened out into a Sort of Probofcis, whofe Shape refembles a Duck's Bill, and under that the Forceps can occafionally be brought together, or even crofs each other, in order to fecure its Prey. However, this Probofcis did not divide nor open like a Bill or Mouth, neither could I difcover that it had any Perforation : which makes it probable, that the Creature fucks in its Nourifhment intirely through the arched Limbs of the Forceps, in the fame Manner as the Squilla defcribed page 358. And indeed our prefent Subject differs little from that voracious Squilla (which I take it to be another Species of) except. in having a Probofcis; whereas in that the Forepart of the Head between the Forceps is remarkably fhort and flat*.

The Figures M and N , in this fame Plate, are two Views of an Animalcule, many of which were difcovered in Water that had been kept in a Glafs Jar for fome Months. -

[^49]380 A Letter from a Friend, \&c.
It is fhewn at M in the Pofture of fwimming, at which Time it moves pretty fwiftly with its flat Head foremoft: its Tail appears divided, and on each Side it extends a fpreading Fin. At N it is fhewn in Profile, and with its Fins drawn in, as ufually is the Cafe when it appears at reft.
'Tis about the Size of the largeft Animalcules found in the Infufions of Hay in Water.

C H A P. XXVII.

A Letter from a Friend, containing many curious Microfcopical Obfervations, $\mathcal{O}^{2} c$.

MA N Y of the Drawings in Plate XV. together with the Defcriptions of them, were fent me by a Gentleman, whofe true Judgment in the Ufe of the Microfcope, and the Accuracy of whofe Pencil in delineating therefrom, I have been long acquainted with: and whofe Name, had I Leiave to mention it, would do great Honour to this Work, as his Friendfhip does to the Author of it. As it is therefore neceffary to give his Defcription of thefe curious Subjects in his own Words, I hope it may be excufable to publifh the whole Letter wherein they are inferted, though written with the kind Partiality of a Friend.

$$
S I R,
$$

$S I R$,

IAm glad you are determined to publifh your Microfcopical Obfervations. There are few who have been able, like you, to gain Accefs to the Sacrarium in quo reducta et claufa funt arcana. Naturce; fewer fill who have Capacity to fmooth the Path for others, and render the Examination of Na ture by the Microfcope eafy, fhort and pleafant: This you have done, and thereby have acquired a Title to the Obfervations which by your Book others have been enabled to make. What I fend you are therefore of Right your own. They have fuffered indeed by not being under your Eye; their Defects are mine; what Worth they may have muft be afcribed to the Affiftance of your printed Directions for the Ufe of the Microfcope.

You defire to add to your proper Ob fervations, fuch as have been occafionally made by your Friends : and as I am fo happy as to be one of that Number, I fhall here communicate what has occurred to me; perhaps of very little Confequence, but as rerum Natura facra fua non fimul tradit, nec omnibus illa patent, the following Obfervations may have the Recommendation of Novelty in fome Degree: and thofe that are not intirely new I fend to you, becaufe they tend to correct the imperfect or incompleat Ob fervations already publifhed.

The

The Drawings I made myfelf, when the Objects were under Examination, with Mr. Cuff's Microfcopes, and as exactly as I could: and his Glaffes are fo excellent, that if there fhould be found any Defects in the Figures, they munt be attributed to my Inaccuracy and Difufe of Drawing. However, fuch as they are, they are at your Service.

If thefe Things hall appear infignificant, yet as in complying with your Defre to have them, they afford me an Opportunity of fhewing my Regard and Friendfinip for you, they are grateful and valuable to me.

I Shall firt give you an Account of what I have met with in refpect to Water-Infects, which have, formerly, in many Inftances, been thought imperfect in their Production, from the Imbecility of the Element to which their Creation was attributed: for aquatic Infects may certainly be comprehended under Animalia aquatica, which Seneca calls, tarda et informia, ut in aere caco pinguique concepto. But Attention to the Works of God makes manifeft, that the Heavens do not only declare his Glory;Fupiter eft quodcunque vides. And indeed whoever fearches the Waters will not find his Curiofity difappointed; there he will fee the Works of God difplayed to thofe who delight in them; and perhaps with greater Variety and more Profufion than any other Element.

Fig.

Fig. i. Plate XV. is an aquatic Infect of which we have two Drawings and Accounts; both very fhort ; one in the Phil. Tranf. 288, the other in the Letters of Mr . Leeuzvenbock, Epif. 121 : and as this Infect has no Name, I will venture to call it the Pediculus aquaticus ; for the Infect to which Goedart gives that Name, is now allowed to be the Pulex arborefiens, or arboreus of Sroammerdam. This Infect is a common one, and of the cruftaceous Kind, but being pretty tranfparent it is a beautiful Object in the Microfiope. When it is fwimming it appears as $f g$. I. It has five Pair of Legs; the firft Pair on the Side of the Head are the longeft it has, the four other Pair are fhort and upon its Belly: the firft and fecond Pair are only vifible as it fwims. The Back is guarded with large Scales which proceed all the Way to the Tail, but from the eighth Scale they are frequently covered fo thick with Hair, that only the Joints or Divifions are difcernable; but in other Poftures, as in $\mathrm{N}^{\circ} 3$, the Scales are vifible all the Way to the Tail. - The Tail is divided into two, with Hairs iffuing from the Extremities of each Divifion, which in fwimming are kept extended as in fig. 1. The Colour of this Infect is a pale brown.

Fig. 4. nhews the Infect upon its Back, when all the Legs were vifible; only the three
three loweft Pair were laid back upon its Body, and kept in a conftant Motion among the Hairs which cover its Belly, as if brufhing itfelf. Nearer the Tail appear two Bags or Paps, hanging down, with a round Part at the Extremities, fet with a few Hairs. I at firft imagined thefe were the Receptacles of its Spawn, but have fince found the Spawn placed much lower under the Tail : fo that if this be the Place of the Spawn in the particular Infect thefe Drawings were taken from, there may be different Species of thefe Infects.

Fig. 3. is the fame Infect reclined on one side, when the Scales are moft confpicuous as they unite : eight of its ten Legs are vifible, and only one of the Paps appears hanging down.

It is faid in the Tranfactions that this Infect is monoculous; and indeed it is not eafy to difcover its Eyes; they are placed in the Middle of the Head between the firft Pair of Arms, and appear as in fig. 2. But it has two Eyes joined at the Bottom, both conical, and apparently feparated towards the Vertices as at fig. X. which fhews thefe Eyes greatly magnified. When the Head of the Infect is bent down, they may eafily be miftaken for one Eye, as is evident from their Appearance in fig. 3 .

Mr. Leeutwenboek's Painter has given us a very bad Figure of this Infect; his Account mentions
mentions the Manner of its carrying the Spawn. In fig. 2. towards the Tail, the Spawn Bags (at leaft what I believed fuch) were more extended than in any of the other Figures, but no Spawn was difcovered in them; and fince thefe Drawings I have examined more of the Pediculi aquaticc, and find the Spawn fixed to the Tail much lower than thofe Bags, and adhering to the Tail by two fine Ligaments, which are eafily broke by the Infect's ftirring itfelf in the Water; and fometimes all the Spawn cornes away fticking together, but oftener feparated and difperfed among the Water. But though I have kept the Spawn fome Time, I never could find the young Infects in the Water, which Leeurventooek fpeaks of; but perhaps I have not had mine when the Spawn was come to an equal State of Matriuty. I have fent you this Account, becaufe the former Figures of this Infect have been extremely imperfect in all Refpects, except the Spawn, which in Mr. Leeurwenhoek's Drawing is exact enough *, and alfo as I found the Opinion received that this Infect varied from all others in being moroculous.

[^50]Noin. II.
Cc
The

336 Animalcules found in Water.
The two Figuris 5 and 6 are I belie: a only different Appearances of the fame Infect, altho' there is fome Variation in the Make of the Shells, but in all other Refpects they agree. I at firft took this Infect for the Putex arborefiens, and certainly it may be claffed with it: but comparing it with Swammerdam's Figure, it by no Means agrees therewith, nor with that which you Shewed me*; for in this there are four Bracbia famofa, in the other only two; thefe here are lower, and proceed from the Infect under the Shell, the others are on each Side the Head and from the Shell. This Infect has two Antennce, and that has none, but a Bill like a Bird's.-I have drawn thefe as they appeared fwimining with their Backs to the Eye, where the joining of the Shells is vifible, which feemed ridged or marked with black Streaks as in the Figures: the Colour was a deep brown.

In fome Pond Water, with the Lens paluffris I found the Infects of which I fent you the Drawings, fig. 7. and 8. The firft of the e, fig. 7. was contained in four very thin tranfparent Shells. The two upper Shells united on the Back, and declined down the Sides till they met with two under Shells, making at the joining of the Sides acute

- The Fizure here mentioned may be feen Plate XII. fig. 14.

Angles,

Aninalcules found in Water. 387

Angles, and at their joining on the Back and Belly obtufe Angles; but the upper Shells projected beyond the lower, which appeared beyond the upper towards the Tail, and probably by this Means thefe upper Shells ferved the Infeet inftead of Fins, and to keep it up in the Water. All the Shells were elliptical:

The Figure reprefents the Infect fwimming, when the Head appeared beyond the Shells without any Antenne or Feelers: the Tail was divided and extended: the Body was very apparent, and that Part which is on the Back in the Middle was in a conftant Motion, alternately contracting and dilating. From each Side below this Part there appeared a Ligament, terminating at the Circumference of the upper Shells, and may perhaps ferve to keep the Shells fteady, or to move them, if they be moveable, which I could not difcover, for the Motion of the Infect is very equable and finooth.

Fig. 8. is an Infect which I am apt to believe is the fame as fig. 5 . in another Pofture, as it ftands feeding in the Water: for it agrees in Colour and in the Shell exactly: the Antennæ and Arms have as near a Refemblance as can be expected in fuch differing Pofitions. It has indeed two Legs behind, wherewith it fixes itfelf to the Glafs, which do not appear in the other; but if they are only to fix itfelf, they may be covered under

$$
\mathrm{C} \mathrm{C}_{2} \text { the }
$$

the Shell when fwimming: however there is fome Difference in the Appearances. This Infect fwims well and nimbly, and by a rapid Motion of its Arms makes a ftrong Current to bring it Food: (which Manner of feeding by a Current or an Eddy is common to many other Water Animals:) indeed, the Swiftnefs with which it moves not only the two Arms that are extended to draw Things to it, but alfo thofe thatare bent back, to drive along each Side what is not fit for its Food, and the Way they co-operate all together to make a ftrong Stream, is inconceivably curious, as well as its Conftancy and unwearied Application. When it is difturbed it draws itfelf intirely into the Shell, and then appears not unlike a fmall Frefh Water Mufcle.

The Infect fig. 9. is very uncommon: I never met with any more of the Kind, nor with any Account of it. At firft, when I found it among fome Water in a Leaden, Ciftern ftocked with the Nympha Vermiculi of the Gnat, I fancied it might be the Vermiculus of that Infect; efpecially as the Head was not very unlike it, and it had pulmonary Tubes towards the Tail, as the Nympha Vermiculus has one. But as it never changed its State during three Weeks that I kept it alive, though the Gnats changed much fooner, and it has many different Parts from
thofe

Animalcules found in Water. 359

thofe, I muft own I know not what Infect it is, or what State it is in.

The natural Length of this Infect was $\frac{1}{r}$ th of an Inch, and its Breadth at the Shoulders or broadef Part $\frac{1}{2} \frac{5}{5}$ of an Inch, according to the mof exact Dimenfions I was able to take. Its Colour was a pale Red or Pink, which appeared deeper at the joining of the Rings, but tranfparent. The Head was covered with a Shell, of a light Brown, with two fmall Eyes fet round with Hair, as was alio the Mouth, or at leaft that Forepart of the Head on each Side of which it had the Antennæ bending inwards; but without Hair or any Joints between the Shell of the Head and the firft Ring of the Body; the Neck Part which appeared being a Continuation from the Head. Its Body confifted of eleven Rings, tapering fomething all the Way to the Tail, but the two firft and three laft Rings not fo wide as thofe in the Middie. Under the firft and fecond Ring it had two Legs, (of which one only could be reprefented in the Figure) and their Extremities were fet round with Hairs : between the tenth and eleventh Ring two finall Tubes arofe, making an obtufe Angle with the Forepart of the Infect's Body, but an acute Angle with each other: the Ends of thefe Tubes were fet round with Hairs and feemed to be open: I take thefe to be pulmonary: not that the Iufect always kept them upon Cc_{3} the

390 Animalcules found in Water:

 the Surface of the Water, though it often brought itfelf up till they were there, but becaufe in other Infects fuch like Inftruments of breathing have been obferved.From the eleventh Ring the Tail hegins which is reprefented as it appears when the Infect ufes it for fwimming, and the Whole of it is moft vifible. It does not however keep it in this Pofture when fwimming, but alternately extends it on each Side and brings it together again as Men do their Arms in fivimming. The Ends of each Branch of the Tail are fet round with Hairs, and there feems to be a Joint in each; but the Drawing will give you a better Idea of it than any Words. - I muft not however omit faying fomething of its Intertines. On each Side there is a fmall Veffel running from the Head to the Tail, in which a conftant Circulation of a pellucid Fluid was difcernable : from the fecond Ring to the fourth a dark-coloured Veffel appeared, with the End next the I Iead feemingly open, or if covered, it was with a light-coloured circular Tegument. This Veffel terminated in a fine Canal that feemed to enter another Bag of a clear white Colour, at whofe End was a Gut or Canal that went quite down to the Tail. This Bag or Veffel I conjectured might be its Stomach. A bove this Gut, and at the feventh Ring, began another Veffel or Ligament, I can't tell which; reaching (after croffing itfelf twice)

Animalcules found in W ater.
to half the tenth Ring, and there ending abruptly, without communicating with any other Part ; fo that unlefs it be an Inftrument for contracting the Body of the Infect in walking along the Bottom of the Veffel it is in, it feems only a Provifion for fome other State it is to affiume. - I forgot to obferve, that when the Infect fwims it ufes alfo its Fore-legs, bringing them up clofe under its Head, and moving them back clofe under its Belly.

If I could have found any more of this Kind, fo as to have ventured killing it, by viewing it in the Solar Microfcope I might have given you a fuller Account of it, efpecially of the Intertines: but as I was curious to difcover what Changes it might undergo, I was very tender of it; however I was difappointed, for it died after I had kept it three Weeks from the 5 th of September, and in a Week after it was gone to Pieces, fo that I could not bring it to Town to fhew it you as I intended.

Fig. 10. the only one of its Kind I have ever teen, is an infect called by Monfieur de Reaumur le Vers à queue de Rat, the Worm zuith a Rat's Tail, of which he has given an accurate Account, Mein. ii. Vol. 4 . of his ex cellent Memoirs. It is it feems the Vermicules of a Fly with two Wings *; and if I

[^51]had had his Book when this Infect wąs found, I fhould have made freer with it than I did, and not have preferved it to obferve its Change of State. The Drawing of it I fend you, and for an Account of it refer you to Monfieur de Reaumur.

This Infect was found in a Ciftern of RainWater in Auguft. The Length of its Body was $\frac{5}{8}$ of an Inch, but its Tail was four Times the Length of the Body, though not extended near fo far as it was capable of being. Above Half of the Tail was covered with a fine Down, in fmall circular Divifions, as the whole Body was: this Down or foft Subftance is of a fine reticular Make, and at the Head there appeared two Antennæ within the outward Coat, which the Infect by Means of thefe Antennæ fpread out or dilated at Pleafure : fo that the downy Covering feemed not fo properly Part of the Infect as to contain the Infect. There were Fibres vifibly croffing upon the Back, and running down to the Tail: And near the Tail, be tween thefe, a Veffel of a black Colour appeared, growing gradually lefs to the Extremity. The Colour of the Infect was a pale Afh, the Tail and Antennæ black, the Extremity of the Tail fet with Hair.

I take this Infect to be the fame with the Rat-tail'd Infect of Monfeur de Reaumur, but by the Figure you will fee it does not in all, Refpetes agree with what he has defcribed
perhaps the Flies of which thefe are the Worms, or the Nympha, may vary in England from thofe in Framce, where certainly they are more common than here. The principal Difference is in the Legs, of which this had only fix Pair, his feven: the Ends of them were fet round with Hairs, and juft under the Tail was a fingular Fin, double, joined at the loweft Part in an acute Angle, and from thence growing fmaller 'till it came to the Body. By Means of this Fin, as a Rudder, it fteered itfelf in the Water, on the Surface of which it kept the Extremity of its Tail : and when Water was added, it lengthened its Tail as much as it could: and if that did not reach the Surface, it raifed itfelf higher, exactly as Monfieur de Reatmur obferves, and about the fime Length, (near five Inches,) before the Infect was obliged to leave the Bottom of the Glafs.

I thall now defcribe an Iniect not found in Water, and very common in Time of Harveft, but of which I have never feen any Drawing or Account. It is called the Harveft Bug : is of a bright red Colour: fo very finall as to be imperceptible to the naked Eye, and on the Point of a fine Needle refembles a Drop of Blood. A Drawing taken from the Infect preferved in a Slider, and greatly sagnified, is given fig. (1.

I had often heard of theie Infects, but did not give intire Csedit to what I heard, 'till a

Lady taking this out of her Neck convinced me of their Exiftence and Tafte. They are extremely troublefome to thofe that walk in the Fields in Time of Harveft, efpecially to the Ladies, for they know what Skins are fineft and eafieft to pierce. They have at the Head a Probofcis near ${ }_{3}^{2}$ of their own Length; by which they firft make Way through the Skin, and then bury themfelves under it, (leaving no Mark but a fmall red Spot) and by their fucking the Blood create a violent Itching ; a good Remedy for which is a little Hungary Water ; though perhaps Spirit of Wine with Cannphire might be more defructive to thefe little troublefome Attendants of Summer Walks. They are I believe frequently carried in the Winds at their Seafon, for I have fince known them attack Ladies in a Garden, which was defended from a Corn Field by a Wall, too high for thefe Infects to get over any other Way.

They have three Legs on each Side, with four Joints fet with Hair, as the Body is all round. The firt Pair of Legs arife from the Back, juft below the Eyes: the other two Pair from the Belly: it has alfo two fhort Antennx, one from each Side of the Head, which appears with a Divifion in the Middie. I have fometimes furpected this little Creature might be a young Sheep-Tick, from its Figure and Way of burying itfelf: but then it flould be found rather where Sheep

Sheep feed than in Fields of Corn, growing, and before Sheep are fuffered to come into thofe Fields: and it is never got as I have heard in Grafs Fields, unlefs bordering upon Corn; but amongit Wheat it never fails. If any one has a Mind to make Trial upon this Infect, how it comes to be amongft Corn only, and yet lives by fucking of Blood, he may eafily find Abundance of them: for though they prefer the Ladies, yet they are fo voracious, that they will certainly lay hold of any Man's Legs that comes in their Way.

I intended to have fent you an Account and the Figure of the young Plant found in the Kidney Bean, but as that has been already accurately oblerved by Dr. Grew in the Anatomy of Plants, I need not trouble you with it: I fhall therefore only take Notice of the Seeds of two other Plants which have not hitherto been obferved, as far as I know.

In the Seed of the Lime Tree, which.. arifes from a Stalk in the Middle of the Leaf, (as reprefented $\mathrm{N}^{\circ} \mathrm{I}$. fig. I.) there is a young Plant to be found, when the Seed is ripe, towards the Beginning of OCZober.

The Seed of the Lime Tree is covered with a rough Skin, within which there is a Shell, but not hard; if this Shell be carefully opened there will appear a thin white Juice, inclofing fix Pods or Bags, all tied together, and adhering to that End of the Seed which is joined to the Stalk, with very fine Fibres sunning

306 Seed of the Lime Tree.
running up the Infide of the Shell, and appearing as fig. 2. Thefe Pods when taken Gut of the Shell appear as fig. 3 .

As the Seed advances in Maturity this white Juice grows harder,' till it is quite ripe, and fome one of thefe Pods has robbed the reft of Nourifhment, by taking place within the Kernel, where it expands and excludes the reft, which will now be found fticking to the outward Cover of the Kernel dried to a brown Colour, with their Fibres embracing the Kernel, ferving only as Cords to keep the Nourifhment of their more fortunate Brother together, and appearing as fig. 5. So that if we follow the Opinion of Swammerdam, and Voltaire in his Metapbyjes of Sir Ifaac Nerwton, page 54 of the Englih Tranflation, that we fee in Tbings a Difenvellopement only, here the Author of Nature has provided in one Seed fix Vermiculi, one of which alone is to become a Nymplo Plant: for I never met with any Seed which contained more than one young Plant, in that State, which under Voltaire's Authority, I may venture to call the Nympba State.

When the Seed is come to a fufficient Confiftence, and ready to drop from the Tree, if it be opened it will appear as fig. 4: the Infide filled with a white fhining Subftance inclofing a deep green Plant like a Flower, which arifes by a finall Fibre from that Part of the Seed to which the Stalk adhered, and

$$
\operatorname{per}_{s a}
$$

perpendicular to it. The Plant when taken out, and viewed in the Microfcope, appears as at fig. 6. All the Fibres of the Leaves are difcernable, altho' the Leaves are themfelves thicker in proportion than thofe of the Tree, and feemingly turgid with Juice. Thefe Leaves are double, and fo tender and foft that I could only with the fineft Needle feparate them a little towards the Top, as I have endeavoured to reprefent in the Drawing.
N^{0} II. is the Seed of Apparagus.- Fig. I. is the red Berry as it grows from the Stalk, which contains, in a foft watery Pulp, fix black fhining Seeds, formed as I have tried to reprefent at $f f$. 2. Their Appearance, whichever Way you view them, reprefents that Shape which Bellini calls Pelecoides. Each of thefe Seeds contains a hard white fhining Subftance with bright finall Specks all over it; and, lying horizontally, a fmall Plant, white indeed, but with a yellow Caft, plainly different from the Parenchyma in which it is fituated. This Plant examined in the Microfcope appears as fig. 4. with bright Spots like Papillæ all over it, and the bending Leaf at the Top tending to a faint green. When the Plant is taken out the Section of the Seed appears as fig. 3 . in which the Bed of the young. Plant runs quite through the Parenchyma, from one Side of the Covering or outward black Film to the pther.

Altho' I fhall endeavour to follow the learned Mr. Hooke's Advice to thofe who fhould correfpond with the Royal Society: " to fend the Kernel of Fact fript from the "Shell of Impertinencies," yet you will give me leave to obferve two Singularities in this young Plant of the A/paragus. Firf, that its Polition in the Seed is very different from moft others : this lies horizontally, and not perpendicular to the Juncture of the Stalk, as others generally do; and indeed though I have feen many Seedling or Nympha Plants, I never met with one pofited as the Afparagus is. Secondly, it has no Fibres or Ligaments commanicating with the Seed in which it is inclofed, but lies in it as a Nidus, adhering only by filling the hollow Bed exactly.

I have now given you an Account, and I fear a tedious one, of lome Things unobferved before, I believe, which have uccurred to me : from your Friendfhip I am perfuaded I need make no Excufe for it; if I was to make one, Pliny the elder (et ille etiann Caufas actitavit) fhall tell you my Sentiments as well as his own, inter crimina ingrati animi et boc duco, Naturann ignorare. I am, Sir,
Your fincere Friend, and moft humble Servant.

[399]

C H A P. XXVIII.

Of luminous Water Insects.

IN my former Treatife on the Microfcope, I took Notice of the foining Light frequently found on the Shells of Oyfters, as being produced by three Sorts of Animalcules, which are there defcribed, according to the Account given of them by Monfieur Ausaut *. I had then no Opportunity of adding any Figure to that Account: but having not long ago been favoured (by a Friend whom I can depend on) with the Defcription and Drawing of one Sort of Animalcule, which he had obferved to occafion fuch Light, I hall infert it here.

Having (he fays) been fometimes fur \rightarrow prifed at the Sparks of Light to be feen on the Shells of Oyfters, on removing them, or friking on them, when newly taken from the Sea; he beftowed fome Pains to find out the Caufe; and after many Examinations became perfectly convinced, that thefe Shining Sparks are lucid. Emanations from a minute Infect, differing in its general Form but little from the common Scolopendra. This Infect he carefully made a Drawing of from the Microfcope, an exact Copy of

[^52]400 Lrminous Water Infects. which is given at Letter A.——Its Length was about the ${ }_{8}^{1}$ th and its Breadth rather more than the looth Part of an Inch.

The Body confifts of twenty-eight Joints or Divifions, exclufive of the Head and Tail Parts: each of thefe Divifions has a Pair of Feet belonging to it, (viz. one on each Side) making the whole Number of its Feet 56; or twenty-cight Pair : they are all hort and befet with Hairs.

The Tail Part is larger than any of the other Divifions, and has three pretty long Spines or Briftes proceeding therefrom. The Head is remarkable, on Account of its being: armed with a Pair of Forceps uncommonly long and large in proportion to the other: Parts: beginning much farther backwards than is ufual in other Animals, and reaching beyond the anterior Part of the Head, in a Manner very convenient for feizing its Prey and carrying to the Mouth any thing it takes hold of. It is furnifhed with a Pair of Horns, and has befides at the Snout two Chort Antennæ or Feelers.

This little Infect can emit or conceal its Light: and fometimes its Lufte is fo bright as to be difcorerable even in open Day-light, efpecially on being touched or difturbed *:

[^53]Its Light is blueifh like that of the Glowworm; or a Spark of burning Brimitone.My Friend obferves, that our fmall Land Scolopendra has likewife the Property of fhining in the Dark, which indeed has been taken notice of long ago *.
fays, that opening Oyfters he found this Animal between two Shells which fuck together. It was alive, but faint. Perceiving it emitted Light in the Shade, he carried it to a dark Place, where by irritating it on the Back with a Pin it thone pretty ftrongly more than once. The Light appeared on its Back towards the Tail, chiefly in two Spots; but, when more violently irritated, it was fometimes feen darting along the Back; and, particularly once, it was illuminated in Streaks up to its very Head. The Infect growing more languid, he put it between the Shells where it was found, in fome Water whereire Salt was diffolved, hoping it might revive; but in an Hour it was quite dead.- Tis about $\frac{3}{4}$ of an Inch long, and $\frac{x}{5}$ of an Inch in Breadth; in Figure flat, with many Fins along its Sides from End to End.

* Mouffet writes, that his Friend Mr. Brewer found twice by Night in the Summer Seafon, amongt Heath and Mofs, the Bining Scolopendra, lucid and fiery; its whole Body emitted Light, but fomewhat fainter than the Glow-worm. Mr. Brewer farther fays, -" Happening to come home one Night in a Sweat, and in the Dark wiping my Head with a Linen Handkerchief, the whole Handkerchief appeared to me fhining, and as it were on Fire; and whilft I viewed this feeming Miracle with Surprize, the Light was all collected in one Spot: whereupon folding the Handkerchief together, I called for a Candle, and on opening it difcovered one of thefe Scolopendra, which by being rubbed about my Head, had fpread over the whole Handkerchief I know not what kind of flaming Vapour."-He affirms it was like the Scolopendra found in Gardens under Stones and Flower Pots. Vid. Thearrum Inject. Cap. xv. De Cicindela.

1 take this to be the Kind of Scolopendra Mr. Willougbby dea feribes, lying rolled up amongft Earth and Dung: Its Colour 2 brown or whitifl yellow, the Head of a pale cheftnut, have ing two Antenne; its Length half an Inch, its Tail forked: Vol. II,

D d

It feems not improper to fay fomewhat in this Place concerning the flining of Sea Water; fince, not without the Appearance of Reafon, it has been fuppofed owing to vaft Numbers of luminous Infects, of which porfibly in the Waters there may be various Kinds as well as upon the Land.

A curious Enquirer into Nature *, dwelling at Wells, upon the Coaft of Norfolk, af firms, from his own Obfervations, that the Sparkling of Sea Water is occafioned by Infects. His Anfwer to a Letter wrote to him on that Subject runs thus: "In the Glafs of "Sea Water I fend with this are fome of the
"Animlacules which caure the Sparkling
" Light in Sea Water ; they may be feen by
\because holding the Phial up againft the Light,
"refembling very fmall Bladders or Air
"Bubbles, and are in all Places of it from " Top to Bottom, but moftly towards the "Top, where they affemble when the Wa"ter has food ftill fome Time, unlefs they "s have been killed by keeping them too " long in the Phial.
"Placing one of thefe Animalcules before "s a good Microfcope, an exceeding minute
its Feet 96 (without including the Forceps at the Tail), that is, 48 Pair.

One Evening after Rain, fays Mr. Ray, I found a fmall Scolopendra of this Sort fhining like a Glow-worm ; 'twas covered with a llimy Matter, which being wiped away, it ceafed not to Thine. Vid. Ray, Hijf. Infeciorum, page $45 \cdot$

* Mr. Jofeph Sparhall.

- Worm may be difcovered, hanging with " its Tail fixed to an opake Spot in a Kind " of Bladder *, which it has certainly a " Power of contracting or diftending, and " thereby of being fufpended at the Surface, "or at any Depth it pleafes in the including *Water.

The above-mentioned Phial of Sea Water came fafe, and fome of the Animalcules were difcovered in it, but they did not emit any Light, as my Friend fays they do upon the leatt Motion of the Phial when the Water is newly taken up. He likewife adds, that at certain Times, if a Stone be thrown into the Sea, near the Shore, the Water will become luminous as far as the Motion reacheth : this chiefly happens when the Sea hath been greatly agitated, or after a Storm.

Fof. Vianelli, M. D. of Ebioggia in Italy, in his Enquiry into the fhining of Sea Water in the Night Time (which, he fays, is feen with Wonder in the Lakes of Cbioggia, from the Beginning of Summer until Autumn, efpecially where Sea Weeds abound), relates, that he brought from thence, one Summer's Night, a large Veffel of this sea Water, which being ftirred about by his Hands in a dark Clofet, fparkled very much; but after it was filtered through a clofe Piece of Linen it afforded no Light at all, notwithftand -

[^54]404 Luminous Water Infecis.
ing all the Motion that could be given it, whilft the Linen appeared covered with numberlefs lucid Particles, thereby proving the Light to be fomething diftinct entirely from the Water.

Then examining fome of the Sea Weeds, he perceived thirty at leaft of the like hind ing Particles upon every Jittle Leaf, and fhaking them over a Sheet of Paper, one of the Chining Bodies was thrown upon it, which being wrapped up in the Paper emitted Light quite through it. Unfolding the $\mathrm{Pa}-$ per, and viewing this luminous Body attentively, he found it far lefs than a fmall Hair, extremely delicate and tender, and of a deep yellow Colour: and by the Help of a Mi.crofcope he difcovered it to be a living Animalcule, of a curious and fingular Structure, and could not cnough admite the Splendour of its Light. It was fomewhat like a Cad terpillar, and confifted of eleven Segments or Ringlets, along which near the Belly were a Kind of Fins or Inftruments of its feveral Motions. From its Head iffued two Horns, and the Tail appeared twifted.

He obferves, that thefe glittering Sea Water Infects are entirely luminous, whereas the Glow-worm emits Light only from a Part about the Tail; and, moreover, that when at ref they do not fhine at all, though they fend forth a prodigious Brightnefs as foon as their little Bodies become agitated. Hence

Hence he accounts for the Fifhermen's foretelling a Tempeft from an extraordinary glittering of the Sea and Lakes: thefe Animalcules, as he fuppofes, being difturbed and put in Motion at the Approach of fuch a Change.

Thefe Animalcules are found, he fays, at the Beginning of Summer, more plentifully amongft the Weeds than in any other Part of the Water: but they increafe furprizingly. in a fhort Time, and difperfe themfelves in the Waters every where *.

In Plate xv. b, c, d, reprefent a very fmall Infect found in fome Ditch Water. b and c Thew it in the Action of moving from Place to Place, which is performed by faftening the Tail-End upon the Plate of Glafs, bending the Body, extending and directing the Head downwards, then fixing the Head and drawing the Tail to it, whereby is made what may be termed one Step: and by repeating thefe Steps its Progreffion was pretty nimble, and much reímbled that of the Species of Caterpillars called Loopers. Its Pofture when at reft, after being tired with Motion, or juft before it began to fet forwards, is feen at d.

I could not by the fericteft Obfervation difcover any fuitable Apparatus about the

[^55]Dd 3 Head,

$$
406 \text { Loute of the Bat. }
$$

ITead, or el fe from its Appearance fhould have judged this little Creature to be a Species of the Wbeel- Animal, which it initates in other Refpects very nearly.

C H A P. XXIX.

The Louse of the Bat.

MOST living Creatures are fuppofed to have their Lice, Fleas, or little Tormentors, of Kinds and Forms peculiar to themelves: fuch have been found in great Numbers on many Sorts of Beafts, Birds, and Fifhes, at fome particular Seafons; Flies, Bees, Earwigs, Spiders, and many other Infects, are fometimes in like Manner peftered with them: nay, even the nimble Flea which teazes us and fucks our Blood, is not free itfelf from Blood-fuckers, which harbour very conveniently under the Scales of its Neck, and about its Legs and Belly, clinging too faft to be flaken off. We are obliged to Seignior Redi for the Figures of the Pediculi peculiar to feveral Kinds of Beafts and Birds; but I fuppofe he had no Opportunity of obferving that of the Bat, which I am now going to defcribe.

The little Animal which the Reader is directed to take Notice of, at the Letters E, F, G, Plate XV. was found adhering firmly
to the filmy Wing of a Bat then but newly dead, and is undoubtedly the Vermin of that Creature : many others were probably concealed under its fhort thick Hair, but being intent on examining this with the Microfeope, and making Drawings of it, I omitted fearching after more.

Its Body is nearly circular, and about the $3^{\text {oth }}$ Part of an Inch in Diameter. It is furnifhed with eight Legs, each having fix Joints : the laft Joint terminates in a tranfparent Tuft or Ball, like thofe at the Feet of fome Flies, but much larger and more fpreading in Proportion to its Size, whereby it is enabled to faften itfelf frongly to whatever it ftands upon. Two fmall Antenne or Feelers are placed at the anterior, and a fmall Frocefs or Tail at the pofterior Part of this Animal. A periftaltic Motion, or rather a Contraction and Dilatation, are alternately carried on through the Intentines, which appear more opake than the Parts about them, and fomewhat in the Shape of the Letter X .

This Animal is fhewn in its natural walking Pofture, with its Back uppermoft, at E, and again at F with its Back downwards, and its Belly next the Eye. It lived more than twenty-four Hours between two Talcs, and died nearly in the Pofture fhewn at E, F, as it flill continues in the Slider now before me.

As the Bat is extremely fwift in its Flights and Returns, it was requifite the Vermin living on it fhould have fome extraordinary Power of preventing its being thrown off; and accordingly this little Infeet is not only provided with larger Tufts or Balls than. ufual at the Extremities of its Feet, but has alfo another very remarkable and uncommon Means of preferving its Situation : for on any fudden Emergency, inftead of walking on its eight Legs, as it ufually does, it can, in an Infant, turn four, fix, or all of them occafionally, fo far backwards as to catch hold of any Thing, and walk on them with its Back as eafly as with its Belly downwards; and I often obferved it with four Legs in their right. Pofition, and the other four crected over its Back, and ready to lay hold, as at G. Hereby it is enabled to fhift its Pofture inftantly, yet till maintain its Ground notwithitanding the fwifteft Motions, as I had the Pleafure of experiencing in feveral Attempts to jerk it off from a Quill, from my Finger, and from other Things it fixed jtfelf upon, which all my Endeavours could not efiect.

[409]

C HAP. XXX.

Obfervations on a large Spider.

HAV IN G reccived a Spider from the Ifland of Nevis of a larger Size than I had ever feen, I pleafed myfelf with the Hope of obtaining thereby a better Knowledge of Spiders in general than I poffibly could by the nicent Examination of the fmaller Kinds.

On meafuring it pretty exactly, the Length of its Body and Tail was found to be $2 \frac{1}{8}$ Inches; the Breadth of the Body and the wideft Part of the Tail very near an Inch. It had ten Legs, of which the foremof two were fhorter than the reft, but the other eight were each three Inches long at leaft, and in their thickeft Parts a Quarter of an Inch Diameter. Such were the Dimenfions when dried, and confequently much fhrunk and leffened: when alive it probably appeared nearly twice as big. The whole Body and Limbs were thickly covered with long Hair. The Body was of a brown Colour ; the Tail was alfo brown, except one longitudinal indented Stripe of white, which paffed along its Middle from where it joins the Body to the Arms. The Termination of each Leg was a curious Tuft of long foft Hairs, under which

410 On a large S'pider's Fangs.
which lay concealed a Couple of exceeding fharp hooked Claws, which murt be greatly ferviceable in clambering, to cling to any Thing, or to feize the Prey.

The Body was cruftaceous, having a Shell as hard as that of a fmall Crab; the Tail Part was foft and downy: on the Back both of the Body and Tail the Hairs were fhorter than elfewhere. The two Fangs were ftrong, black, hard and horny, terminating and being Parts of two Chort thick Limbs to which they were articulated, projecting from the Body directly hefore the Mouth. One of thefe Fangs magnified about three Times is Shewn at Letter I. They were not placed horizontally like a Pair of Forceps, fitted to catch and hold Things by bringing their Points to meet, as in mof of our Englith Spiders; but they lay Side by Side, with their Points bending downwards, and in Readinefs to ftrike either fingly or together, after the Manner of the Tarantula. Thefe deadly Weapons of the Spider I was very induftrious to examine, and by my Glaffes could difcern very diftinctly a minute Opening or Slit near the Extremity of each Fang juft in the Front thereof, through which one can hardly doubt a poifonous Juice was ready (when the Creature was alive) to be ejected into the Wounds it made. This Aperture is defcribed by Mr. Leeurvenlook, in the 272 d Number

$$
\text { On a large Spider's Fangs. } \quad 41 t
$$

Number of the Pbil. Tranf. page 868*: but Dr. Mead having examined the Weapons of feveral Spiders, and particularly of one very large, without finding it, was inclinable to believe, when he publifhed his curious Account of Poifons, that Mr. Leeuwenboek had been miftaken, and that the Fangs were capable of inflicting a Wound only; into which a poifonous Liquor was inftilled afterwards by a fhort white Probofcis thruft out of the Spider's Mouth \uparrow. Having alfo never feen it myfelf at the Time I wrote my Treatife on the Microfcope, I was then of the fame Opinion. But as foon as I made the above Difcovery, which was in April 1746 , I fhewed the Fangs I have been defcribing to Dr. Mead, who was much pleafed with a Sight of this Aperture, and with his ufual Candor gave it ashis Opinion, that as amongft Serpents fome Kinds only are poifonous, and have Teeth that are perforated for the Emiffion of their Poifon, viz. the Rattle Snake, the Viper, \&\&c. whereas the Generality are harmlefs, and have no hollow Teeth: fo likewife fome Kinds only of Spiders are poifonous, or have any Perforation in their Fangs; but fuch whofe Fangs are perforated may be fuppofed uncommonly dangerous.

[^56]It would not be frictly honeft to pafs over this Subject, without declaring, in Juflice to the Memory of Mr. Leeurwenboek, that notwithftanding I have fometimes thought him miftaken in his Defcriptions of Things examined by the Microfcope, it has feldom happened, but that afterwards I have found fuch his Defcriptions true, and that the Objects I had formerly judged from were not exactly of the fame Sort, or in the fame Perfection as his: And this I hope will make others cautious, not immediately to determine in Matters of this Nature from a fingle and perhaps a flight Examination; which I believe too often has been the Cafe.

Having fatisfied myfelf concerning the Fangs of this Spider, I proceeded to an Examination of its Eyes, which I found to bo eight, fituated on the Summit of the anterior Part of the Body : for I think a Spider cannot properly be faid to have any Head. I cut out a Portion of the Shell or Cruft in which the Eyes were placed, that I might bring them with more Convenience to my Glafies. And I foon faw that the two Middile Eyes were much larger and more remarkable than the reft, and feemed exactly round, and that the three fmall ones on either Side were oval. The Difpofition, proportionable Size, and Appearance of them all together, may be feen at H .

After clearing away from the inner Part of the Shell the Blood Veffels and other Integuments of the Retina, or perhaps the Brain, the two larger Eyes (which were each as big as a middling Pin's Head) appeared to be tranfparent fpherical Bodies of an Amber Colour. Part of each Sphere projected externally beyond its Socket, but the largent Part was funk internally within it, and there was round each a circular tranfparent Membrane by which it feemed to be faftened *.

The Figure and Tranfparency of thefe Eyes raifed in me a Defire to fee with the Eye of a Spider; and therefore cutting them out very carefully (for in their natural Situation they could not anfwer my Purpofe) I took the Pains to fet each of them in a

- Spiders Eyes are not pearled or compofed of fmaller Eyes like thofe of Flies, Beetles, and mot Kinds of Infects : they refemble more the Eyes of Quadrupeds, but are not moveable, which is probably the Reafon why Providence has furnifhed the Spider with more Eyes than Infects that have Eyes pearl. ed, or Animals whofe Eyes can turn : for as Safety requires that Creatures fhould be able to difcover Danger, or even their Food, on whatever Side it lies, fome have pearled Eyes, or more properly Clufters of Eyes, which (tho' not moveable) are directed every Way : the Eyes of others are as it were multiplied by Motion; but Eyes like thofe of the Spider, and immoveable, would be unable to anfiwer thefe Pure pofer; unlefs there were more than two.

Indeed the Shepberd Spider has two Ey'es and no more : but then its Legs are fo very long, its Body fo fmall, and thofe Eyes are placed in the Midule of its Back on fuch an Eminence, and in fuch a Direction, that they take in nearly a whole Circle. A fuller Account of this Spider, and Figure of its Eyes, may be feen in Dr. Hoox's Micrograpbia.

Pin-Hole made through a Piece of Card, whereby I could employ them to view Objects with. Their magnifying Power was very great, and had they been taken from a Spider newly dead, I have Reafon to believe they would have given me much Pleafure: but having been drying for fome Years, they had contracted a Cloudinefs that prevented Objects being feen through them with any tolerable Diftinctnefs. I am not however without Hopes of bringing this Experiment fome Time or other to fucceed, even with our Englifs Spiders.

The wounding Inftruments of moft Animals, whofe Bite or Sting is poifonous, refemble in their Contrivance the Fangs of the Spider juft now defcribed; as will be eafily comprehended by viewing the Tooth of a Viper, pictured in the fame Plate at L; wherein a fimilar Opening is fhewn, through which, on biting, a poifonous Juice is thrown into the Wound ; and alfo by the Fang of an Indian Scolopendra or Niillepes, near whofe Point there appears a like Opening, ferving to the fame Purpofe, at the End of a long Slit or Fiflure, as may be feen at K. The Weapon with which the Scorpion Atrikes has likewife fuch an Aperture.

[4I5]
 C H A P. XXXI.

Mijcellaneous Objervations.

HAVING defcribed all the Figures given in the preceding Plates, I fhall add a few Obfervations in a mifcellaneous Manner.

In the Waters of fome Ditches there is found a very fmall Sort of Leech, of a pale brown Colour, whofe Length is about half an Inch when extended fully. Several Months in the Year its young ones are carried about with it wherever it goes, fticking faft underneath its Belly. 'Their Number is ufually 8,10 , or 12 ; and if feparated from the $\mathrm{Pa}-$ rent, even to fome Diftance, they immediately replace themfelves, and that fo regularly, they might eafily be miftaken for Legs, whilft they are ftretching themfelves out beyond its Body, with their Heads moving to and fro, which is their conftant Pofture when the Parent Animal is in Motion. This Subject deferves farther Examination.

Curious Cafes are made by a fmall Worm or Maggot, with admirable Dexterity, of the Stalks of Duckweed, which the little Creature bites afunder with its Pincers, places with great Order and Exactnefs like the Threads of a Linen Cloth, and glews together. 'Tis diverting to fee the brifk Inhabitant come a little Way out of its Door, either for Food or Pleafure, and immedi- in again, leaving nothing to be feen but a few green Stalks.

In the Spring of the Year I have feveral Times obferved great Numbers of little Cafes, on a Row of Pales by the Side of the New River at Enfield, made in the prettient Manner imaginable of the green microfcopic Mofs growing on the fame Pales. They were open at both Ends, and about a Quarter of an Inch in Length : each contained a little black Maggot, that put out its Head or Tail occafionally, and became at laft a fimall black Fly.

Amongft the Eels in Vinegar one fhall fometimes find accidentally a pretty and furprizing Phænomenon, i.e. a Chain or Series of minute Clobules feemingly ftrung together like a Necklace of Beads. Thefe are nothing more than a Row of Air Bubbles lying one behind another in the dead Body of one of the Anguilloe; which Body from its great Tranfparency is not vifible, unlefs by the greateft Magnifier.

My good Friend Dr. Miles happening to take Notice of a bright green Mouldinefs on the Bark of fome Fire-wood: and, by a Lens of an Inch Focus, finding it to be Numbers of minute Fungi of a regular Appearance, he employed a large Magnifier, through which their fpherical Heads feemed as if they were nothing elfe but Globules of Seeds. He obferved
obferved, at the fame Time, feveral Seeds adhering to the tranfparent Foot-Stalks which fupported the Heads, and many fcattered on the Glafs Plate whereon the Subftance was placed for View; whereby he had an Opportunity of feeing many diftinct Seeds, nearly of an oval Form, but feveral Times larger than the Seeds of common Muffrooms, even when feen with the fecond Magnifier, and the latter with the firit.- He fays, he has often viewed the Heads of a finall Kind of coriaceous Fungus of about $\frac{7}{8}$ Inch Diameter, and always found the Seeds on their Gills much larger than thofe of any other Mufhroom he had examined, tho' rather lefs than thofe this unregarded Plant produces.
He fent with this Account a Hiece of Wood with the Mouldinefs thereon, and alfo fome of it on a Slip of Glafs : both which I examined carefully to determine the Bignefs of the Heads and their Seeds: and viewing the Spherical Heads of the middle Size, (fome being larger and others finaller) I found, (according to iny Micrometer) that 3 of them touk up the Side of a Square, 70 of which Squares made an Inch in Length : confequently thrice 70, or 2.10 of thefe Fungi, make a Line of one Inch: or, in other Words, the Diameter of thefe fungrous Bodics is, at a Medium, the 2 roth Part of an Inch.

The Seeds are oval; and I find, by the fame Micrometer, that Io of them laid by one Vol. II.

E e
another

418 Mijcellaneous Obfervations.

another the fhortef Way of their Diameter, or 8 of them the longeft Way, fill up the Side of a Square, 270 of which Squares make an Inch in Length.-Taking therefore 9 as the Medium, 270 Times 9, or 2430 of thefe Seeds will be required to make a Line of an Inch in Length; or in other Words, each Seed is the 2430 th Part of an Inch in Dia-meter.-And according to thefe Calculations 44100 of the Spherical Heads, or $5,904,900$ of their Seeds, may lie by one another in the Surface of an Inch fquare.

Yet minute as the Seeds of this little Fungus are, the Doctor obferves very jufly, that they are bigger than thofe of fome others of the fame Genus which exceed it Thoufands of Times in Bulk. For the Seeds of a very large edible Mu/broom being examined, by a Glafs magnifying 320 Times in Diameter, and their Figure being elliptical, 7 of their longeft and 8 of their fhorteft Diameters were found equal to the Length of a Line known to be the 500th Part of an Inch. So that the longeft Diameter of each Seed was the 3500 th, and the florteft the 4000 th Part of one Inch in Length, and $14,000,000$ of fuch Seeds would be required to cover a Surface of one Inch fquare *.

[^57]The proportionable Size of Fruits and Seeds to the Trees and Plants that bear them, comes under no Rules that correfpond with our Conceptions. The Beech and $A \beta b$ are produced from Seeds fmaller than the Garden Bean. The Ouk has for its Fruit only a fmall Acorn; whereas the Pumpkin, whofe Weight fometimes exceeds roolb. is the Production of a feeble creeping Plant, unable to fupport itfelf, much lefs its enormous Fruit. The Vanilla, (climbing to the Height of feveral Feet) produces in long Pods Seeds fo finall, their Diameter is not more than the rooth Part of an Inch. Then fuppofing the Cavity of its Pod equalato a cylindrical Tube of $\frac{1}{2}$ Inch Diameter, and its Length to be fix Inches, (which Dimenfions are taken with great Moderation) the Number of Seeds in one fingle Pod will be more than 47000.-Thefe Seeds ground with Chocolate give it a rich Perfume.

I could add many more Obfervations, which perhaps fome of my Readers might be pleafed with; but finding this Work has grown under my Hands, much beyond the Size I intended, I fhall haften to conclude this Part with recommending the Study of Nature to all who have Leifure and Opportunity for it, as affording the moft reafonable Pleafure the Mind of Man is capable of enjoying.

The World around us is the mighty Volume, wherein the Great Creater with his

420 Mijcellancous Obfervations.

own Finger has defcribed himfelf. Human Writings conlif of Lines and Figures intended to denote the Sounds or Words of Language; which being at firf arbitrarily applied, were afterwards by common Confent and Cuftom allowed to reprefent certain Ideas, tho' without any Refemblance to them. And as very different Sounds and Marks have been employed, by Nations Strangers to each other, to exprefs and denote the fame Objects of the Senfes or Conceptions of the Mind, hence arofe different Languages and Cbaracters, which muft therefore be unintelligible to all who have not previoufly been inftructed in their Signification and Ufe; nor can be attained without a great deal of Pains and Attention. But the Book of Nature is written in an univerfal and real Cbaracter, which every Man may read in his own Language; for it confifts not of Words, but T Things, which picture out the Perfections of the Deitr. The flarry Firmament every where expanded, with its numberlefs Sytems of Suns, and their furrounding Planets, the Regularity, Harmony, Order, and Conftancy of their Mutions, declare the Immenfity and Magnificence, the Power and Wifdom of their Creator. Thunder, Lightening, Tempefts, Hurricanes, Earthquakes, and Volcanos, fhew the Terror and Deftruction of his Wrath. Seafonable Rains, Sunfhine, and plentcous Haryefte, denote his Bounty and Goodnefs,

Goodnefs, and his Regard for the Happiners of all his Creatures; and demonftrate how, when his Hand is open, he fills all Things living with Plenteoufnefs. The conftant Succeffion of Generations in Plants and Animals, implies the Eternity of their firft Caufe. Life every where fubfifting in Millions of different Forms, fhews the boundlefs Diffufion of his Animating Power; and Death the infinite Difproportion between him and every living Thing.-Even the Actions of Animals are an eloquent and patbetic Language; thofe that want the Help of Man, have a thoufand engaging Ways, which like the Voice of God fpeaking to his Heart, command him to preferve and cherifh them; whilit the Looks and Motions of fuch as would do him Harm, ftrike him with Terror, and warn him to fly fro or arm himfelf againft them. In hort, every Part of Nature directs us to Nature's GOD; for according to Lucan, in that fine Speech he makes for Cato,

JUPITER efo, quodrunque vides; quocungue moveris;

which I fhall tranflate with great Liberty, and by the Way of Paraphrafe,

Range where you pleafe, thro' Water, Earth, and Air, GOD is in every Thing, and every where.

$\left[\begin{array}{ll}422\end{array}\right]$

Some Account of a new-comflructed Microfcope, ufed in the foregoing Experiments.

THE cumberfome and inconvenient Double Microscupes of Dr. Hook and Mr. Marßal, were many Years ago reduced to a manageable Size, improved in their Structure, fupplied with an eafy Way of enlightening Objects by a Speculum underneath *, and in many other Refpects rendered agreeable to the Curious, by Mr . Culpepser and Mr. Scarlet. Some farther Alterations were however wanted to make this Initrument of more general Ufe, as I fully experienced in the Year 1743 , when examining daily the Configurations of Saline Subftances, the Legs were continual Impediments to my turning about the Slips of Glafs; and indeed. I had found them frequently fo on other Occafions. Pulling the Body of the Inftrument up and down was likewife fubject to Jerks, which caufed a Difficulty in fixing it cxactly at the Focus : there was alfo no good Contrivance for viewing opake Objects. Complaining of thefe Inconveniencies, Mr Cuff; the Optician, applied his Thoughts to fuhtion a Nicrofcope in another Manner, leaving the Stage entirely free and open by taking away the Legs, applying "

[^58]fine-

Some Account of a neww Microfoope. 423 fine-threaded Screw to regulate and adjuft its Motions, and adding a concave Spsculum for Objects that are opake.

The foregoing Examinations having been ali made by an Inftrument thus improved, I fhall give a Plate and Defcription of it, (as an Addition to my former Book on the Microfcope) by the Name of Mr. Cuff's newconfructed Double Microfcope.

All Parts of this Inftrument are Brafs.The Body A, being firmly fupported in a broad circular Collar at the End of the Arm a a, which projects from the Top of the Pillar C, may be taken out or put in at Pleafure.

A fquare Box $b b$, fcrewed down to the wooden Pedeftal II, fupports the whole Machine, by the Affiftance of the long flatfquare Pillar E , which is fixt within the faid Box.

The moveable Pillar C , which is fiorter than the Pillar B, tho' of the fame Shape, by fliding up or down againft the broad flat Side of the faid Pillar, raifes or lowers the Body of the Microfcope as Occafion may re-quire.-Both Pillars ftand in the Box 66 .

The fquare Collar Dholds the two Pillars B and C together, and fides up or down upon them, carrying with it the Body of the Microfcope.-The Screw-Button 3 is intended to fix the Pillar C, when the upper Edge of the Collar D being fet at the fame Ee4 Number

424 Some Account of a new Microfope.
Number as that of the Magnifier employed, its foeal Diftance is brought nearly right.

When the Pillar C is faftened, the Microfcope (by the fine-threaded adjufting Screw E) may be moved fo gently up of down, without Jerks or Slips, that the true Focus may be found with great Readinefs and Exactnefs.

The horizontal Plate or Stage F , having in the Middle thereof a circular Hole 4, directly over which the Body of the Microfcope is furpended, is exceedingly convenient to place Objects on for Obfervation, being freed intirely from the Legs which incumber other Double Microfcopes.

The concave Looking-Glais G, turning on two fmall Screws in the Arch d (at the Bottom of which a Pin goes down into the Hole e in the Pedeftal) reflects the Light of a Candle or the Sky directly upwards on the Object, by moving the Looking-Glafs horizontally or vertically.

A double convex Lens H, turns on two Screws, for tranfmitting Light to affift in illuminating opake Objects, when the long round Wire f is placed in the Spring-Tube g, at the Corner of the Stage F.

I-is a hollow Cylinder whore Sides are open, and at whofe End a concave Silver Speculum b, having a round Hole in the Ifidit thereof, is ferewed. This Cylinder fiips over the Snout i of the Microfcope, and when

Some Account of a new Microfcope. 425 when fet to the Figure there marked, and correfpondent to the Number of the Magnifier made ufe of, the Silver Speculum reflects Light on the opake Object to be examined; which Object muft either be held in the Spring-Tongs at one End of the Wire O, placed in the Slit m on the Stage F; or be put on the Ivory Block P, ftuck on the pointed End of the faid Wire. The third or fourth Magnifiers are fitteft to be ufed with the Silver Speculum.
K. L. M.N.QQ.R.S.T.V.W.X.Y. Z. are different Parts of the Apparatus which I think needlefs to defcribe, as all who are acquainted with Microfcopes will know them at firft Sight, and others may inform themfelves either in my former Treatife on thefe Subjects, or in the Book which Mr. Cuff gives to thofe who buy this Microfope of him.

In the Year 1747 a Micrometer for this Inftrument was alfo contrived by Mr. Cuff, being a Lattice of fine Wires, placed (when made ufe of) in the Focus of the Eye-Glafs, by unfcrewing the Body of the Inftrument. As the Readinefs wherewith the real Size of Objects may be calculated by this Micrometer muft render it valuable to the Curious, there needs no Apology for laying fome Account of it before them, drawn up and given to me by my much honoured Friend Martin Folkes? Efq; Prefident of the Royal

426 Remarks on a Micrometer, \&c.
Society, and firt Prefident, under the Royal Charter, of the Society of Antiquaries of London *.

Remarks on a Micrometer to be applied to Double compound Microfcopes. By MARTin Folkes, Efq; P. R. S.

THIS Micrometer only confifts of a Lattice of fine Silver Wire diftant from each other one fiftieth Part of an Inch, interfecting at right Angles, and fo placed in the Focus of the Eye Glafs, as to divide the whole vifible Area of the Microfcope into Squares, whofe Sides are each the $\frac{1}{50}$ th of an Inch.

Now as the Image of any Object to be examined is formed in this Place, it is plain that by this Lattice Work fuch Image may readily be meafured, either by comparing its Length or Breadth with the Diftance of

[^59]the Wires ; or by comparing its whole vifible Superficies with one or more of the little Squares formed by the Interfection of the fame Wires.

And the true Size of the magnified Image being thus known, the true Magnitude of the Object itfelf will be known alfo, if the magnifying Power of the Object Glafs is but given: and this will eafily be found in. the following practical Manner :

Let a minute Object of a known Size, be carefully viewed in the Microfcope: as for Example, Part of a fine diagonal Scale divided into the Millefimals of an Inch; and let it be examined how many of thofe Millefimals anfwer to the Diftance of two of the Wires abovementioned, remembering to eftimate that Diftance from the Outfide of one of the Wires to the Infide of the other. For as 20 are to that Number of Millefimals juft found, fo is the Length or Breadth of any Image meafured by the Micrometer to the Length or Breadth of the Object itfelf: or as 400 are to the Square of the fame Number of Millefimals, fo is the magnified Superficies of any Image, to the true fimilar Superficies of the Object.

And again, as that Number of Millefimals of an Inch juft found is to 20 , fo is Unity to a Number expreffing how many Times the Length or Breadth of any Image eftimated by the Micrometer, is greater than the true Length

42§̂ Remarks on a Micrometer, \&c.
Length or Breadth of the Object itfelf : and this laft Number I call the magnifying Power of the Object Glafs.

This Trial is to be made with Care once for all, for every different Object Glafs to be ufed with the Micrometer : and their-different refulting magnifying Powers, once regiftered in a Table, will be ready upon all Occafions. For thus the Length or Breadth of any Image eftimated by the Micrometer, will when divided by the magnifying Power of the Object Glafs, exprefs the true Length or Breadth of the Object itfelf: or the Superficies of any Image eftimated by the Micrometer, in fquare Millefimals of an Inch, will in like Manner exprefs the true fimilar Superficies of the Object itfelf; if it is divided by the Square of the magnifying Power of the Object Glafs ufed. And for this Purpofe is may be of Ufe to fet down in another Column of the Table, the refpective Squares of the Numbers expreffing the magnifying Powers of the feveral different Object Glafies.

As fome Difficulty may be found, in applying the diagonal Scale abovementioned to the larger Magnifiers: chiefly thro' want of Jight when the Object is to be brought very near to the Glafs; that Defect may be fupplied by the Ufe of fome minute natural Obiect, whofe true Size has already been carefully determined by one of the leffer Magni-

Remarks on a Micrometer, \&c. 4^{29}

fiers, and whofe Image is again viewed with one of the greater: for as the Number of Millefimals of an Inch contained in its true Length or Breadth, are to thofe now found in the Length or Breadth of its Image, fo will Unity be to the magnifying Power of the Object Glafs now made ufe of, \mathcal{E}^{C}.
I fhould now farther take Notice, that the Numbers here called the magnifying Powers of the feveral Object Glafies, do not exprefs the whole magnifying Power of the Microfcope. For the Image formed in the Focus of the Eye Glafs is again magnified to the Eye, by the Operation of the Eye Glafs itfelf. And the Focus of this Eye Glafs being, in the Double compound Microfcope made by Mr. Cuff, and which he calls (tho' fomewhat improperly) his new double reflecting Microfcope, at the Diftance of one Inch and a Quarter nearly ; the Eye, placed on the other Side, views the Image of any Object formed in that Focus under an Angle about feven Tines as great as that under which it would fee it with Diftinctnefs if naked, and at the Diftance of fomewhat lefs than nine Inches. We may therefore then confider all Images viewed with this Microfcope as magnified feven Times in Length or Breadth, or 49 Times in Superficies by the Intervention of the Eye Glafs: and we may coniequently exprefs the whole magnifying Powers of the Microfcope, if we refpectively multiply the Numbers

430 Remarks on a Micrometer, âc. Numbers already placed in two Columns of the Table, by 7 and 49 .

I would juft obferve, that fome Double Microfcopeshave a Drawer between the Glarfes, and by Means of which they magnify differently with the fame Glais: in thefe $\mathrm{Mi}-$ crofcopes therefore one Pofition of the Drawer fhould be pitched upon as the moft convenient, and the fame fhould conftantly be ufed whenever any Magnitude is to be determined by the Micrometer applied to the fame.

The Lattice abovementioned, whofe Wires are only diftant a Fiftieth of an Inch, may upon fome Occafions be found inconvenient in viewing of Objects. But it may very eafily be taken out and put in occafionally, or have its Place fupplied by another whofe Wires may be the 20th or the 10 th of an Inch afunder ; and this laft efpecially will give no Hindrance to common Obfervations, and will befides be very ufeful to fuch as would draw with fome Exactners any of the Objects they examine with their Microfcope.

I am told that Silver Wire may be had to make thefe Lattices of, whofe Diameter is rather lefs than the feven hundredth Part of an Inch.

The Mention Mr. Folkes makes of a Lattice whofe Divifions are ${ }_{T}$ to of an Inch, was owing to his having experienced the Utility of fuch ąn one in my Microfcope, made by my felf of human Hairs, and faftened exactly
in the Focus of the Eye Glafs, whofe Diftance being $\mathrm{I}^{\frac{1}{4}}$ Inch, or $\frac{5}{3_{0}^{5}}$ ths of nine Inches, (the Standard of Sight he computes by *) the Diameter of an Object feen through that Glafs is magnified 7 Times, and the Side of each Square whofe real Length is $\frac{7}{7}$?, appears (magnified through the faid Glafs) to be $\frac{7}{10}$ ths of an Inch.
Employing different Object Glaffes or Magnifiers in viewing Objects, makes no Difference in the Lattice or Micrometer, whofe Squares are magnified by the Eye Glafs only, and always appear of the fame Diameter, that is, $\frac{7}{10}$ ths of an Inch. But the Object being more or lefs magnified according to the Power of the Object Glafs, the Image thercof thrown upon the Lattice extends over more or fewer of its Squares: whence the magnifying Power of all the Glaffes belonging to my Microfcope, and the real Size of Objects examined by them, are thewn in the following Table.

[^60]432 Remarks on a Micrometé, \&ic.

Remarks on a Micrometer, \&cc. 433
For Example._An Object, or Part of an Object, whofe Diameter when viewed through the Magnifier N° I. appears the exact Length of one Square of the Hair Micrometer, is really no more than the 270 th Part of an Inch in Length.

And if, when viewed through the fame Glals, it appears to fill up the whole Space. of one of the faid Squares, its real Area is no more than the 72900 th Part of a Square Inch, EJc.

In order to render this Initrument fill more ufeful, Squares may be drawn on Papér (with very black Lines) correfpondent to thofe of the Micrometer magnified by the Eye Glafs, viz. $\frac{7}{10}$ ths of an Inch Diameter; by the Means whereof, (if placed under fo thin a Paper as they can plainly be feen through,) an Object may be drawn exactly of the Size it appears when magnified by any Glafs whatever.-Nine Squares fo drawn are thewn Plate XVII. fig. 6.

In the fame Plate, fig. 4 hhervs a Micrometer whofe Divifions are the Eiftieths, and fig. 5 , another whofe Divifions are the Tenths of an Inch: And this laft may remain in the Body of the Microfcope, without being any Hindrance, whatever Glafs is ufed.
'Twere well if the Workmen ground their Glaffes fo exactly to a Standard, that the fame Table might ferve for the Microm eter to every Set of them; but as that is Vol. II.

Ff
not.

434 Mr. Leeurwenbock's Microfcopes. not the Cafe, a particular Table muft be made for every Set of Glaffes.

Of Mr. Leeuwenhoek's Microfcopes.

THOUGH Mr. Leelrvenboek's Microfcopes are much talked of, very few People are acquainted with their Structure and Apparatus, no Figure of them that I remember having ever been made public: 'tis therefore hoped the Curious will be pleafed to fee a Drawing of them, taken with great Exactnefs from thofe in the Repofitory of the Royal Society, which are all alike in Form, and differ very little in Size from this Drawing, or from one another *.

The two Sides of one of there Microfcopes are fhewn Plate XVII. fig. 7 and 8. The Eye muft be applied to the Side fig. 7.The flat Part A is compofed of two thin Silver Plates fatened together by little Rivets $b 66666$. Between thefe Plates a very fimall double-convex Glafs is let into a Socket,

- An accurate Defcription of the 26 Microfcopes, and Objects belonging them, contained in a fmall Cabinet which Mr. Lecurvenboek at his Deceafe bequeathed to the Rojal Society, was prefented many Years ago to that Society by Martin Folkes, Efq; and may be feen $\mathrm{N}^{\circ} 380$ of the Philofopbical Tranfazions. And a farther Account, fetting forth the magnifying Powers, and óther Particulars concerning the fame Microfcopes, (which were three Months under my Examination for that Purpofe) was prefented by me to the Royal Sociely in the Year 1740, and publifhed Pbil. Tranf. No 458. But neither of thefe Accounts has any Drawing of the Microfcopes.

Mr. Leeuwenboek's Microfcopes. 435 and a Hole drilled in each Plate for the Eye to look through at c. A Limb of Silver d is faftened to the Plates on this Side by a Screw e which goes through them both. Another Part of this Limb, joined to it at right Angles, paffes under the Plates, and comes out on the other Side; vid. fig. 8) at f : through this runs, directly upwards, a long fine-threaded Screw g, which turns in and raifes or lowers the Stage b, whereon a coarfe rugged Pin i for the Object to be faftened to, is turned about by a little Handle k; and this Stage with the Pin upon it is removed farther from the magnifying Lens, or admitted nearer to it, by a little Screw l, that paffing through the Stage horizontally, and bearing againft the Back of the Inftrument, thrufts it farther off when there is Occafion. - The End of the long Screw g comes out thro' the Stage at m, where it turns round, but acts not there as a Screw, having no Threads that reach fo high.

There Microfcopes are plain and fimple in their Contrivance. All the Parts are Silver, fahhioned by Mr . Leeurwenboek's own Hand, and the Glaffes, which are excellent, were all ground and fet by himfelf. He glewed one orat moft two Objects on the Point of the Pin belongirg to cach Microfcope, and carefully preferved them there; fo that each Infrument being devoted to one or two OhEf2 jects

43^{6} DireEtions for taking off

jects only, could be applied to nothing elfe. This Method induced him to make a Microfcope with a Glafs adapted to almoft every Object, 'till he had got fome Hundreds of them, as he fays himfelf, in the 2 d Vol. of his Works, page 290, Mibi quidem funt centum centumque Microfcopia, \&c. All this Trouble and Expence is now faved, by a Set of Glaffes to be fhifted with great Eafe, as the Subject to be examined may require.

The magnifying Powers of there Glaffes come fhort of fome now made, but are fully fufficient for moft Purpofes. Of the 26 Microfcopes I examined, one magnifies the Diameter of an Object 160 , one 133 , one II4, three 100 , three 89 , eight 80 , two 72 , three 66 , two 57 , one 53 , and one 40 Times.

Directions for obtaining an exact Reprefentation or Pieture of any Coin or Medal.

TRAVING taken a perfect and fharp Impreffion of the Coin or Medal in the fineft Sealing Wax, cut the Wax away round the Edges of the Impreffion, with the Point of a Penknife, or a Pair of Marp Sciffars.

The Rolling-Prefs Printers have an Ink for printing off Copper Plates, very different from what other Printers employ in printing Books: work fome of this with an HairPencil

Reprefentations of Coins or Medals. 437

Pencil into all the Lettering and hollow Places of the Wax Impreffion, which are the rifing or projecting Parts of the Medal. This done, pafs your bare Finger, or a Cloth ftrained upon it, gently but nimbly over the Surface, till you perceive the Ink perfectly cleared away, unlefs where the Letters are, and in the finking Parts; and after this, rubbing your Finger on a Piece of foft Whit ing, pafs it lightly over the Surface 'till you are fure it is dry and clean.

Have ready, foaked in Water, but the Water fqueezed a little out of them, fome Pieces of Writing Paper fomewhat larger than the Medal. Place one of thefe on the Wax Impreffion; and on the Back of the Paper lay three or four Pieces of thick Flannel about the Size thereof.

I fhould premife, that you muft have a Couple of flat fmooth Iron Plates, about two Inches Square, and of a Thicknefs not to bend. The Wax Impreffion muft be placed, with its Face upwards, on the Middle of one of thefe Plates, before you fpread the Paper and Flannels on it ; and the other Plate muft immediately be laid over them. Then, holding them all tight together, put them carefully and evenly into a little Prefs, made of two Iron Planks about five Inches and a half long, one Inch and a half wide, and half an Inch in Thicknefs : having a Couple of male

$$
\text { Ff } 3
$$

$43^{8} \quad$ Directions for taking off
Screws that run through them, with a turning fenale Screw on each to force the Planks together. And thefe female Screws muft have flong well-tempered Shoulders, whereby to work them. A Figure of this Prefs is Mhewn Plate XVII. fig. 9 .

Things being thus adjufted, holding the Prefs in your Left-Hand, ftrike wi h a little Hammer, firt on the Shoulders of one Screw, and then on the Shoulders of the other, to bring the Planks together parallel, and render the Preffure every-where alike; unlefs you find it requifite to give more Force to one Side than the other, which thefe two Screws will put in your own Power.

The Prefs opens again, by a Stroke or two of the Hammer, the contrary Way, on the Shoulders of the Screws : and then you will find a true and fair Picture neatly printed off; which (if any Deficiencies appear therein) may be eafily repaired, when dry, with a Pen and Ink, or, what is better, a Pencil and Indian Ink.

This Method is very eafy and ready for taking the Picture of a Medal either in Black or Red ; proper Ink of both which Colours may be had of the Copper-Plate Printers: but your Wax Impreffion muft be different in Colour to that of the Ink you ufe, otherwife you cannot fee when the Ink is well cleared away; and as the whole Succefs depends

Reprefentations of Coins or Medals. 439

pends on the Goodnefs of the Wax Imprerfion or Mould, the following Rules, taught by Experience, are recommended to be obferved.

1. Let the Wax be fine, or it wants a proper Hardnefs, and the Impreffion will not be fharp.
2. Spread it wider than the Medal, and of a Thicknefs in proportion to the Relievo of it.
3. Clap on the Medal when the Wax has a moderate Degree of Heat : for, if it be too hot, the Medal is apt to ftick: and, if too cold, no good. Impreffion can be taken. The right Time feems to be, juft after the Wax ceafes to work up with little Bubbles in it.
4. Make not the Impreffion on a Table or any hard Body, without feveral Folds of Paper, or, what is better, a Woollen Cloth, or fome foft Leather underneath; for foft Things give Way to the Preffure and Form of the Medal, which hard Bodies will not do.
5. Squeeze the Medal down equally hard on every Side, and continue the Preffure 'till the Wax is near cold : for if the Medal be taken off while the Wax remains hot, the rifing Parts, being ftill foft, will fink down, and the Impreffion be much lefs fharp.

440 Directions for taking off
6. White Patteboard, Card-Paper, or fome other thick Paper, is beft to take Wax Imprefions on.
In Places where Copper-Plate Printer's Ink cannot be had, Water-Colours my be made ufe of. Lake and Vermilion mixt make the moft proper Red, Indian Ink the beft Black. Directions for other Colours may be feen, Pbil. Tranf. $\mathrm{N}^{\circ} 472, \mathrm{p} .82$; in an Account of this Invention laid by me before the Royal Society Anno 1744, from whence this is partly taken.

There are indeed many other ingenious Contrivances for taking off Medals, in' Sulphur, Plaifter of Paris, Paper, \mathcal{E}°. But fince a Mould muft be formed for each of the fe, either of Clay, Horn, Plaifter of Paris, or fome other Materials, which requires a great deal of Trouble and Time to form, this Method I bclieve will be judged abundantly more convenient, efpecially as fome of thofe Ways do really a great deal of Injury to Me dals, by impairing the Sharpnefs of their moft delicate and expreffive Strokes.

For Wax is always ready, and hurts not the fineft Medal: and however brittle it may be thought, the Moulds made thereof refift the Force of downright Preffure, almoft as effectually as if they were made of Steel ; and might ferve to take off a thoufand Impreffions, were they not apt to crack, and the Marks of thofe Cracks to render what

Reprefentations of Coins or Medals. 445

what are taken from them afterwards not quite fo elegant. But each Mould will ufually afford three or four good Impreffions, either coloured or plain; and if the Ink be got off clean, the fame Wax may be melted and employed feveral Times.

It is evident, that Impreffions taken thus; muft be exactly what the Medals are from whence we take them, and that any Perfon who can procure the Wax Impreffions of Medals, may, by a little Pains, be furnifhed with a noble Collection of the genuine Prints of Medals; which may be placed in Books, in orderly Series, and moved from one Leaf to another at Pleafure ; if a little Margin be left about them, and only the Edges be pafted down. I flatter myfelf therefore, that the Ufefulnefs of this Contrivance will not be flighted, on account of its being fo plain and obvious, that every Gentleman will wonder he did not hit on it himfelf; fince Difcoveries that are moft eafy, and confequently may be practifed by every body, however fimple and void of Invention they may appear, are really in themfelves moft valuable. I need only inftance the Art of Printing, (from which this in fome Sort is borrowed) the moft happy Difcovery that perhaps was ever made by Man ; yet feemingly fo eafy, and what the Ancients came fo near to in their Seals, that

442 Concerning Coins or Medals.
it is extremely furprifing they did not find it out.

In this Manner I have taken off many Thoufands of Coins and Medals for myfelf and Friends: and as any Gentleman may divert himfelf by doing it, I hope this Account of it may prove acceptable.

As the laft Plate was not finifhed till the whole Book was nearly printed off, whereby fome Figures in it are not defcribed in their proper Places: It may be needful to inform the Reader, that $\mathrm{N}^{\circ} \mathrm{I}, \mathrm{II}, \mathrm{III}$, are different Brancbings of Copper, produced by the feveral Mixtures mentioned CHAP. LIII. Part I.-That $\mathrm{N}^{\circ} \mathrm{X}, \mathrm{XI}$, are two Species of Corallina marina, and N° XII a Species of Fucus marinus, all magnified by the Microfcope.

> I N D E X.
I N D E X．
A．

$A^{\text {CID（volatile Spirit）}}$ its Effects－－－ 91,75

Arions of Animals，an expreflive Language－－ 4^{21}
Alum examined 97
its Corffigurations when excited by Heat 4． 97
its Cryjfals when at reft 4， 102 4， 102
produces Comet－like Figures－—－ 99
how to preferve－－— — — — — 100
how produced
Earth
from A frica
－－－－－－
$\begin{gathered}104 \\ i b .\end{gathered}$Anber（Salt of）examined－－－－－ 1138
its Generation uncertain－－－－－ 139
where found－－— — — 一 140
Queries concerning it－－－－ 148
Infects how fuppofed to get inno it 145
Ammoriac（Salt）defrribed－－— —－ 109
examined by the Microfcope－－－ 110renders Water cold－— —－ 112
Anguille，vid．Eels．
Animalcules，fmalleft feen in Water－－－－ $23 r$their wonderful Machinery－－－${ }_{229} 229$with Shells and Wheels－——— 295
with a Proborcis－－一 一 217
Antimony（Flowers of）defribed and examined－ 12 Ithe Bafis of Nofrums－－－－－ 122its Operation defrribed－－— ${ }^{124}$Antimonial Cup and perpetual Pill－－ 125
Arbor Dianc，or Silver Tree－－－－ 193Martis，or Iron Tree－－－－－ 194
Veneris, or Copper Tree - - - - - 395
Arfenic, produced from Cobalt $ー$ ーー ー - 128
not eafily foluble - - - - - 129
its Cryftals - - - - — - 1_{30}
a deadly Poifon, its Symptoms - - - 136
and Remedics - - ${ }^{131}$

I N D E X.

Cafes of People poifoned by it - $\quad 132,136-7$
Experiments to know it Experiments to know it
Fumes how pernicious Fumes how pernicious - - 133 gives a Silver Colour to Copper - - I35 Afs Tree, Infects on the Bark of - 371 Altracion and Repulfion fuppofed greatly inftrumental in the
Configurations and Cryfat's of Salts, Sc. 27,48
Alternate Fits of each
Queries concerning -

B.

Camomite, Salt of - - - - - ${ }_{1} 182$
Camphire examined
Candle-light beft to examine Salts by the Microfcope 14
Carduus (Salt of) examined - - - 17^{8}
Carp, Loufe of - - - - - 374
Cajes made of Duckweed by a Maggot - _ $\quad 415$
Mofs by a Maggot
Cioltenham Salt . - - - - - 149
Cobalt, what - - - - 128
Arfenic and Smalt made from it - - ibid.
Collecition of Solutions how to make and preferve $3^{2,2}$, \&c.
Colours of precious Stones whence derived $43,82,216$
Con-

I N D E X.

Gonjezures concerning Amber - $\quad 140$ to 146
Configurations and Crylalizations how different
fuppofed owing to Attraction and Repulfion

$$
\text { not to Vegetation } \quad 29,46
$$

Gems formed in the fame Manner - 43
Copper: Particles how attracted by Iron $78,82,106$ to 208 obtained pure by fuch Attraction. - - - 80 gives Colour to Gems
Experiments on its Colours its Colour how diffufible Branchings of it to produce to preferve $\quad 195$
Copperas, fee Vitriol (green)
Corals and Corallines, Conjectures about their Formation 217 ,
by an Appofition of Particles - 219
by Infects improbable - $\quad 220$
Salt of examined
Corrofrue Sublimate, a violent Poifon
Cryflallization how performed
according to Sir Ifaac Newion -
how to preferve -

Cry/bals, their very minute Figures the fame as when large
and Configurations confidered together - $\quad 41$ how formed - - 217
Cucumber, Salt of - - $\quad 17^{\circ}$

D.

Defign of this Work - I, 9
Directions how to make Solutions of Salts - - 10
to examine them by the Microfcope - - 12
to take off Medals or Coins - - 436
Difolutior how effected - - 19 according to Sir I/aqc Nerwton, as explained by Dr. Friend - ibud.
Dramirgs how neceffary to thefe Subjects - - 7 in thisWork no fanciful Reprefentations - 3
Duskweed, curious Cafes made of it by a Maggot - 415
E. Eels

I N D E X.

E.

Eels in Patte viviparous

F.

G.

Gems, how probably formed, and whence their Colours 43 , 216
Generation oviparous and viviparous how different 327 , \&cc.
Glafies, their great Utility - - - ${ }_{231}$
Glauber's wonderful Salt - _ _ _ $\quad \begin{aligned} & 153 \\ & \text { Globe Animal }\end{aligned}{ }_{222}$
$\begin{array}{ll}\text { Globe Animal - - - - } \\ \text { God, all things alike eafy to him } & 322 \\ 229\end{array}$
Reflections on his Works - - 230, 420
has defcribed himfelf every where __ 420
his Perfections taught us by every thing - ibid.
Guliclminus his Obfervations on the Figures of Salts - 24
H. Hair-

I N D E: X.

H.

L.

Letter to Martin Folkes, Efq;.concerning the Wheel Animal - - - $\quad 267$
from a. Friend with miciofcopical Obfervations 38 r
Leeurwernboek his Microfcopes defcribed - - 434
Juttice done to his Character - - 412
Life feemingly fufpended - - - - 254
Reflections and Confiderations on it - - 256
Light of a Candle beft to examine Salts - - - 14.4
on Oyfters - - - - - 399
on the Scolopendra - - - - 40 r
in Sea Water - — — ———
M. Manxa

I N D E X.

M.

Medul of Gold beftowed by the Royal Society on the Author for his Experiments on Salts, \&x.
Medäls, how to take Inipreflions and Pietures of - 436
Metals, Vegetation of, what $\quad 192$
Micrometer contrived by Mr. Cuff - 425
Remarks on it by Mr. Folkes. $42 G$
in the Author's Microfcope 430
Table belonging to it $\quad 43^{2}$
Microfcope, which fittelt to examine Salts $\quad 15$ made ufe of in thefe Experiments - 422 New Double Compound defcribed -ibid.
Mr. Leeuwénbook's defcribed 434
Millepedes, Salt of - - 183
Mouldinefs on the Bark of Wood $\quad 416$
minute Fungi, of what Size $\quad 417$
 N.

Naftha Springs near the Cafpian Sea defcribed - 141 Steams take Fire on fcraping the Ground, and applying a Candle - ibid. how managed, and its Ufe
white like Oil of Amber $\quad 142$ white like Oil of Amber _ $\quad 143$
Nature regular and conftant - 6,8 feen at Work by Glaffes - - 7 hes Plan in the Production of living Animals - 326 the Language of - 420
Net-like Arms, an Infect having fuch -_ 366
Nitre or Salt-Petre examined - - - 63 $\begin{aligned} & \text { its Cryftals } \\ & \text { how produced }\end{aligned} \quad-\quad-\quad 65$ Obfervations on - $\quad 7^{\circ}$ Diffolvent of Silver $\quad 74$
Noftums from Antimony, their Operation defcribed - 124

I ND EX.

$$
0 .
$$

P.

Q
: Queries concerning the Formation of Cryftals and Configurations —— 26, \&c. concerning the Production of Amber $\quad 140,146$
Vol. II.
Gl
R. Rami-

I N D E X.

R.

Ramifications of Metals how probably produced - 199 of Copper how to produce - 195, \& C. Pc: bere. See Ar/eric.
Rat-railed Infect of Mr. de Reatimur u- 391
Refufcitation of Plants what - - 208
$\begin{gathered}\text { Rheum on catching Cold } \\ \text { loaded with Salts }\end{gathered}-\quad$ - $\quad \begin{gathered}184 \\ \text { ibid. }\end{gathered}$
S.

Saccharum Saturni, Sugar or Salt of Lead
114
Salts in general what
att not but when diffolved _- 13,232 their USe and Excellence in the Oeconomy of Nature $17,59,61,213$ fupply Niatter and Form to Gems and figured Poffils 18, $44,213,215$ incorporated with Metals caufe Ramifications 214 Otyecion, that their Figures cannot be determined, anfwered

- 225 their Solutions how to prepare and preferve - 10,14 how to examine by the Microfcope is
SALTS defcribed and examined in this Work are,
Salt Gem or Rock Salt

$$
T .
$$

$\begin{aligned} & \text { Tartar Salt of } \\ & \text { vitriolated }\end{aligned} \quad-\quad-\quad-\quad-\quad \begin{aligned} & 155 \\ & 158\end{aligned}$
Tincal, or Tincar, i. e. rough Borax, v. Borax.
Tin, Salt of
Gobacco, Salt of - — — - — ${ }_{17}^{117}$
Oil of, how prifonous - - - 177
Tranfmutation of Iron into Copper, what, and how effected 79 V. Varilla,

I N D E X.

V.

w.

> Z.
$Z_{\text {iment }}$ Springs in Hurgary \quad - \quad - 79

$$
F I N I S
$$

To the Boorbindre.
The Plate of the Miciofrope, (whick is not numbered) muft be ut fronting Page $42 z$.

[^0]: * Unlefs the new-difcovered Properties of Electricity be imagined owing to fome Caufes we-are not yet acquainted with.

[^1]: - Vid. Difcorfo Copra le Figure de' Salic. Printed at Bologna, $4^{10} \cdot 1683$.

[^2]: \ddagger Newton's Opticks, Page 339. Again, 347.

 - Ibid. Quere 26.

[^3]: - Unlefs by fome fuch means, it is not eafy to imagine that the Particles of Water fhould be able to enter the Interftices between the conflituent Particles of Salts: for the firt Particles of Salts are found to be fmaller even than thofe of Air, by their paffing through Cork, Glafs, and other Bodies, which Air cannot pars through, and confequently their Interdices muft be fill much fmaller.

[^4]: * Cold Water or warm Water will do for fome Sorts, but . hot Water does no Harm to any, and is belt for molt.
 Vol. II.

 D
 the

[^5]: * Notwithfanding this Manner of Expreffion, in Conformity to the Appearances of Things, I fuppofe the Configurations of Salts are produced according to certain Laws of Repulfion and Attraction, whereby the floating Partiv

[^6]: T. Th is does not mean that alt Salt made from Sptrigs is - Baffer-Salf, büt only that ous Bajuthesalt is one liind of Satv made from Springso $\approx \%$

[^7]: - Shaw's Boerb. Cbein. p. 106. Vol, I.

[^8]: * Vid. Woodward's Metbod of Folfils, p. 36.

[^9]: * Tie freesing or fudden Change of Water into Ice, gives the bett Idea, how Cryftal, Gems, sce. may be form'd and that too ptihaps in a very fudden Manner.

[^10]: - Vide शueries, p. 36.

[^11]: * The above Account is the Subflance of a Letter to Sir Hans Sloane, which he favoured me with the Ufe of; and alfo of another Letter communicated to the Royal Society by Lord Cadogan: both thefe Letters were written by the Reverend Mr. William Henry, who was himfelf upon the Spot. I have alro a Lump of Metal, wherein moft of the Iron has been diffolved in the Water, and its Place fupplied by Particles of Copper.

 Vol. II.
 G
 in

[^12]: It is obfervable, that many of the Pyrita exhibit Lines diverging from a Center, exaetly in the fame Manper.

[^13]: * Thefe Salts or Cryftals are obtained by the Help of Spirit of Vitriol, or, as Lemery directs, by diffolving White Vitriol in the Phlegm of Vitriol.
 diffolved

[^14]: - Vide Lemery's Chemitry, chap. 18.

[^15]: * Vide Lemery's Chemiltry, chap. vi. Boerbaave's Chemiltry, by Sbaw, Vol. II. page 137.

[^16]: - At Alteftle in Bobemia are Mines of black Schifus, whence they make great Quantities of Alum and Vitriol; and from a Gleba Pyritofa found in the fame Mines, they obtain much Sulphur. I am obliged to Dr. Fames Mounfey for this Information ; and for Specimens of both the Subfances, which he collecied upon the Spot and fent me.

[^17]: * I have alfo an aluminous Earth brought from Maryland, and given me by Mr. Brook.
 + Vid. Phil Iranf. No 104, p. 67.

[^18]: *Dr. Woodward in his Hift: of Foffis, Vol. I. p. 222, fays, That Grains of Tin, and the Cryitals from it, in the Mines, are quadrilaterai Pyramids: and this feveral of them now before me prove.

[^19]: - Regulus of Antimony made up in a proper Form and Size, is called the. Perbetual Pill, becaufe it receives very little Diminution, tho' carried through the Stomach and Bowels fifty tines, and will purge every time take is as often as you pleafe. Antimonial Cups are made likewife of this Regulus, which for a long Time will render Wine gut into them emetic.

[^20]: * All thefe laft-mentioned Configurations appear like delicate Engravings, and afford the prettief Sight imaginable.

[^21]: * Cobalt is a hard and heavy mineral Subftance, common* ly of a blackifh grey Colour, fomewhat refembling the Ore of Antimony, but lefs fparkling and more difficult to break. Some of it has Spots of a Purple or rather crimfon Colour, which are called the Flowers of Coball. When roafted or calcined in a reverberatory Furnace with certain Proportions of Yot Afhes and common Sali, it produces a dark blue, glaffy, or cryftaline Matter called Zaffer or Sonalt, and the Fumes collected in this Procefs afford by different Management the White, Yellow, and sed Arfeniss.

[^22]: - Mead on Poifons, 3 d Edit, pag. 217.
 + A Phyfician of great Emincnce gave me once a fmall femi-tranfparent brown Mafs, fhot oat in Angles, which

 Vol. II.
 K
 2 Chemif

[^23]: - Glauber tells us, in his Treatife de Salibus, that Cobalt and Arfenic, though violent Poifons, are yet harmlefs unlefs taken in Subftance, but if exalted by a Sublimation with Salts and rendered volatile, the very Fumes of them will kill, as is well known to thofe who prepare the Water called Aqua gradatoria from a Mixture of Vitriol, Nitre, and Arfenic, the leaft Vapour or Fume whereof inflantly affeets the Heart with the molt horrid Tremors, and exceedingly diforders the Brain itfelf: a Candle will likewife be nearly extinguifhed in the faline Fumes zhereof.

 In Dr. Mead's Mecbanical Account of Poifons, 3 d Edit. pag. 225, are thele Words, "I had once in my Pofo ". feffion, given me by an ingenious Chemift, a clear Li" quor, which though ponderous, was fo volatile, that it "would all fly away in the open Air without being " heated; and fo corrofive, that a Giafs Stopple of the
 "Bottle which contained it, was in a fhort Time fo

 - eroded, that it could never be taken out. The Fume
 - from it was fo thin, that if a Candle was fet at fome
 - Diftance from the Bottle, upon a Table, the Heat would
 " direct its Courfe that Way; fo that it might be poifonous
 -r to any one that fat near to the Light, and to nobody
 "befides." The Doctor very humanely conceals this Compofition, left an ill Ufe might be made thereof.

[^24]: - In the Difillation of Amber there firft rifes a thin limpid Oil, then an Oil yellow and tranfparent, which is fucceeded by a volatile acid Salt and a red Oil fomewhat cloudy: a grofs fat Oil like Turpentine comes over next, and laft of all a thick black Matter. At the Bottom remains a finall Quantity of a Caput Mortuum. Vid. Boerbaave's Analyfis of Amber, Vol. Ild of his Chemiftry, Procefs 87. Hartmate obtained an Oance of volatile Salt from itb. of white Amber, whereas 1 lb . of yellow afforded fcarce a Dram.

[^25]: - Pearl Ahes are a pure Sort of Pot-Afh.

[^26]: - Vitriolated Tartar is commonly an Ingredient in Powders for the Teeth, as on rubbing them with it they become white immediately: but it hould be ufed feldom and with great Caution, wafhing the Teeth well with feveral Mouthfuls of Water afterwards: for it whitens them by Erofion, and if frequently applied will deftroy their outward clofe and hard Coat of Enamel, after which the internal and more fungy Part can latt but a litile while.

[^27]: * Tho' Aqua Fortis acts on the Filings of Cooper fafter than it can on a Lump of that Metal, I have by Experience found that very fmall Particles of Iron rubbed from the File, and mixed with the Copper Filings, do much Prejudice to the Experiment.

 As Fume; arifing from the Solutions of Metals in Ague Foris, \&ec. are difagreeable and unwholefome, 'tis advifeable to make them in the open Air, and fo placed that the Wind may blow the Fumes from you.

[^28]: * Of this Kind I fuppofe the Ramifications of Silver. Copper, and Iron to be that are met with oftentimes in Mines; either incorporated with the Stony Bed of the Metal, as in the capillary, vegetative, or arborefcent Silver Ore from Poof, or in Shootings or Branchings out from the Ores themfelves: in the Manner of an Iron Ore deferibed by Doctor Woodward, (Vol. I. CIa ls IX. Part IV. No 85.) having very fine Shoots or Efflorefeencies; from a perpendicular Fiffure in a vafly high Mountain, in Cumberland; where he fays, great Numbers of much finer Shoots than that in his Poffelfori, (but fo brittle and render he could nor pereServe them) role like Vegetables, with a fingle Stem, which parted afterwards into feveral Branches, of all Sizes, to the Height of near two Inches. The Stems were round, and fo were the Branches; but towards the Extremities they were fo jagged as to refemble common Heath. They were exactly of the Complexion of Iron, a duly red with a Catt of blue.

[^29]: - Salt Anmontar witlr Aiua Fortis makes an Aqua Regia.

[^30]: - 'Tis beft to keep all Mixtures with acid Spirits in a litile Eox by themfelves, and in Phials (holding an Ounce at leafi) not more than balf filled; for fome of them will ferment and fiand in need of room: they flould alfo have well fited Glafs Stopples.

[^31]: - Vitriol, Alum, and Nitre, are fo volatile, when diffolved, as to force through the clofeft Cork, or between the Bottle and the Cork, tho' ever fo clofely ftopped.

[^32]: * And fometimes a yellow, as feveral large Grains of Tin in my Poffefion prove.
 t Sce Woodward's Fofils, Vol. I. p. 188, and 220.

[^33]: * As I think it needlefs to enter into Particulars; by Corals and Corallines I intend, in general, whatfoever the Naturalifts include under the Names of Coralliuin, Millepora, Madripora, Coralliza, \&c.

[^34]: - I rall thofe Córals fony which have a Hardnefs like unto Stone; and would be underfood to mean by fony Matter, that Matter which conflitutes the Batis of fuch Colals; without any critical Enquiry whether it is or is not different from that Kind of Matter whereof fome Stones ate made.

 Dr. Wooaward fays, "the true marine Coral is indeed 2 " Atony Subltance, and of mineral Nature and Origin: the " contlituent Matier of it is beat off from the Rocks and "Cliffs, (where the Agitation of the Sea is great) borne " thence, precipitated and affixed to Rucks, Stones, Shells, " or other I hings, where the Water is more fill and calm. - As it is of the fame Conflitution, fo it owes its Solidity " and the Cohefion of its Parts to the fame Caufe that Stones " and other Minerals do." Hiff. Foffrls, Clafs V. Vol. I.

[^35]: * Let me not be mifunderftood to mean the Impreffrons of Plants found frequently on Slates, Iron-Stones, Ejc. for fuch Impreffions are undoubtedly owing to the very Plants themfelves, whofe Figures they bear, having been lodged in the Matter whereof fuch Slates or Stones are made, whilft it was in a fluid or foft State; which they ferve to prove it formerly has undoubtedly been.

[^36]: - The Reader is intreated not to hurry over this Subjeat too haftily, but to examine with due Attention the leveral Sorts of Cryjtals, Spars, Src. and he will find amongf them many whofe Shootings are as regular and uniform as thefe of Coral, and their Variety perhaps as great ; yet all thefe are allowed by Naturalifis to derive their Subftance and Form from cryfalinz Matter, combined with different Sorts or Praportions of metallic, Aony, eartby, or other Subftantes. Lec him particularly examine and confider the Ludus Melmontii, the farry waxzn Vein, the Erica-formis or Heath-like Spar, the vegetative Silver, Copper, and Iron-ores, and all the regubarly fgured Cryjfals, Spars, Marcaftes, and metallic Bodics.

[^37]: * The Curious may confult on this Subject Dr. Parfons's Obfervations on the Analogy between the Propagation of Animals and Vigetablrs, page 200, \&:c.
 or more

[^38]: * Wheel Animats, though found with moft Gertainty in Leaden Gutters, \mathcal{E}^{3}. are often difcovered in the Waters of fome Ditches, and likewife in Water that has ftood a confiderab?e Time even in the Houle : for I have often met with them, in fufficient Plenty, in a Sort of fimy Matter, that is apt to be produced on the Sides of Glaffes and othe: Veffels, that are kept long with the Infiffons of Hay or other Vegetables; and probably they are wafted thither by the Air, when in the Condition of little dry Globuls.

[^39]: * There are called Wheel Animals, from their refembling the foregoing in fome Particulars.

[^40]: * Some Swarms of them are red, and others green; but whether this Difference be owing to their Food, or fome other Accident, or whether they are of different' Species, I am unable to determine.

[^41]: * The fame Progreflinn I have been defcribing, was obferved at Norzuich, by Mr. Arderon, in the Cornia Cimmonis River Snail.

[^42]: * In the Eggs of numberlefs Species, which fhew no Concern for them after they are once laid, no more Heat at all is neceffary, than what is common to the Air or Water in which they are expofed.

[^43]: * I have not the leaft Objection to this Name, though I here retain what I had given them my felf long before either of thefe Gentemen had publihed theirs: and I am pleafed to find our Ideas of this Creature fo near alike.

[^44]: - A Defcription nf the Apparatus here referred to, is given by Mr. Trembley, N°. fst. ot the Dbit. Tirans.; and a ligure explanatory nit the time hay be fien Tab, 1. fis. 4 belong: iug to that Tranjutises.

[^45]: * I never had been fo lucky myfelf as to meet with this Species of Water Animals, but am obliged to Mr. Arderon, (on whofe Judgment and Fidelity I can depend intirely) for the Figures and Account thereof.

[^46]: * One of thefe, which I kept fome Time, was fo bold and furious as to attack any thing. that was put into the Water: infomuch that I ufed fiequently to divert my Friends with hoiding a Quill near it, which it would fly at and feize with great Violence, and hanging faft thereto by its Forceps, would fuffer jefelf to be pulled up quite out of the Water by it.

[^47]: * The chief Difference between thefe two Sorts of Squillo, both of which I am acquainted with, confifts in the arming of the Head; which in the voracious Species is furnifhed with only a ftrong hooked Pair of plain fmooth Forceps, like thofe of a third Sort fhewn in this fame Plate N° xvi. and again more magnified as fig. S: but having no Sriout between the Forceps as there is at S.-The Head of the more gentle Sort is like No iv. juf now defcribed, having ferrated Forceps, and an additional Pair of Claws, (nay in fome Species even two Pair of Claws) about the Head to affirt the Forceps: Thefe feed on Pulices aquatici, and other fuch fmall lnfects, whereas the firlt mentioned Species prey on Worms, Tadpoles, Newts, Filkes, E̛c.

[^48]: - This is the leaft Infect I have obferved produced out of the Water.

[^49]: * Suppofing the Probofcis away, the Drawing No xvie, will give a pretty good Idea of the Squilla page 35^{8}.

[^50]: * From finding this little Creature very frequently with its two Bags of Spawn adhering to its Tail, (as may be feen Plate IX. fig. II. of the Microfcope made eafy; in the Drawing there, taken from Mr. Leeuwerbook,) I have been accultomed to call it the Bag-Animal.

[^51]: - It changes to a Sort of Gad-Fly or Breeze, about the Size and Colour of the common Ree, having ondy two Wings : the Tail Part broad and flat, and without any Sting.

 $$
 \text { C c } 4 \text { had. }
 $$

[^52]: - Misrefope made eafy, third Edit. page 241.

[^53]: * The Rev. Mr. Tbomas Harmer of Wattlefeld in Sifölk, fent a Sea Infect in a Friend, who gave it me, preferv:d in Spisit of Wine. The Account Mr. Harmer wrote with is fays,

[^54]: * A Drawing of this came with the Account, but it was too late for the Engraver.

 Dd 2

[^55]: * A large Account of this may be feen tranflated from the Iraliant, in the Univerfal Magazine, for Dosember, 175 I .

[^56]: * Sce alfo Arc. Natur. Tom. IV. Par. II. pag. 39.
 †Vid. Mechanical Ascoznt of Poifons, third Edit. page 88.

[^57]: * All the Species of Fungi were formerly fuppofed to bear no Seeds: Ray fays of them, nullo nec Semine nec Flore; but good Glaffes now convince us of their producing Seeds in vatt Abundance, growing commonly between the Gills.

[^58]: - Sec Microfope madif safj, Plate III. pege 16.

[^59]: - This Gentleman, whofe amiable Character for Ability in Science and Goodnefs of Heart is known and refpected by all the World, being unhappily difabled by a paralytic Diforder from attending the Meetings of the Royal Socisty, where for eleven Jears he had prefided with great Honour, thought frorer on the laft annual Day of Election, viz. Noveniber 30 h $17 j^{2}$, to decline being ayain elected Prefident. Where-解它 the Gentlemen of the faid Society, after returning their moft gratcful Acknowledgments to Mr. Folkes for his many and ufeful Services, elected unanimoufly the Right Honourable the Earl of ilaccirsfold to be their President in his Stead.

[^60]: * The ufual Standard of Sight is 8 Inches, but as Mr. Folkes has thought proper to make it almoft 9 Inches, all there Calculations are conformable thereto.

